Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Riluzole has been found to modestly prolong survival by approximately two to three months. It may have a greater survival benefit for those with a bulbar onset. It is approved by the US Food and Drug Administration (FDA) and recommended by the National Institute for Health and Care Excellence (NICE) (England and Wales). Riluzole does not reverse damage already done to motor neurons but affects neurons by reducing their activity through blocking Na+ entrance into the neurons and thus blocking the release of the chemicals that causes the activity of the motor neurons. The reduction in activity prevents the ruining of the neuronal muscle and so the drug can act as a protective chemical. Studies have shown that the function of this drug is dependent on the amount taken at a given time. The higher the concentration, the better the drug will protect the neurons from ruin. The recommended dosage of Riluzole is 50 mg, twice a day for people with known ALS for more than 5 years.
There are a number of side effects caused by the drug including the feeling of weakness in muscles but this is normal due to the function of the drug. Studies have shown that people on the drug are not likely to stop responding to it or develop symptoms that might cause the activity of neurons to rise again, making Riluzole an effective drug for prolonging survival.
In 2015, edaravone was approved in Japan for treatment of ALS after studying how and whether it works on 137 people with ALS and has obtained orphan drug status in the EU and USA. On May 5, 2017, the FDA approved edaravone to extend the survival period of people with ALS. It costs about 145,000 USD per year in the US and 35,000 USD per year in Japan.
Other medications may be used to help reduce fatigue, ease muscle cramps, control spasticity, and reduce excess saliva and phlegm. Drugs also are available to help people with pain, such as non-steroidal and anti-inflammatory drugs and opioids, depression, sleep disturbances, dysphagia, and constipation. Baclofen and diazepam are often prescribed to control the spasticity caused by ALS, and trihexyphenidyl, amitriptyline or most commonly glycopyrrolate may be prescribed when people with ALS begin having trouble swallowing their saliva. There is no evidence that medications are effective at reducing muscle cramps experienced by people with ALS.
Management of ALS attempts to relieve symptoms and extend life expectancy. This supportive care is best provided by multidisciplinary teams of healthcare professionals working with the person and their caregivers to keep them as mobile and comfortable as possible.
Treatment for individuals with PLS is symptomatic. Baclofen and tizanidine may reduce spasticity. Quinine or phenytoin may decrease cramps. Some patients who do not receive adequate relief from oral treatment may consider intrathecal baclofen (i.e., infusion of medication directly into the cerebrospinal fluid via a surgically placed continuous infusion pump). However, patients are carefully selected for this type of procedure to ensure that they will likely benefit from this invasive procedure.
Physical therapy often helps prevent joint immobility. Speech therapy may be useful for those with involvement of the facial muscles. Physiotherapy treatment focuses on reducing muscle tone, maintaining or improving range of motion, increasing strength and coordination, and improving functional mobility. In PLS, stretching is thought to improve flexibility and can also reduce muscle spasticity and cramps.
Patients with PLS may find it beneficial to have an evaluation, as well as follow-up visits at multidisciplinary clinics, similar to those available for people with ALS. These multidisciplinary clinics may provide patients with the necessary treatment that they require by having an occupational therapist, physical therapist, speech language pathologist, dietician and nutritionist, all in one site.
Research has focused on finding a pharmacological treatment that is specific for intention tremor. Limited success has been seen in treating intention tremor with drugs effective at treating essential tremor. Clinical trials of levetiracetam, typically used to treat epilepsy, and pramipexole, used to treat resting tremor, were completed in 2009-2010 to establish their effectiveness in treating kinetic tremor. A clinical trial for riluzole, typically used to treat amyotrophic lateral sclerosis, was completed at the Sapienza University of Rome to evaluate its effectiveness of treating cerebellar ataxia and kinetic tremor.
It is very difficult to treat an intention tremor. The tremor may disappear for a while after a treatment has been administered and then return. This situation is addressed with a different treatment. First, individuals will be asked if they use any of the drugs known to cause tremors. If so, they are asked to stop taking the medication and then evaluated after some time to determine if the medication was related to the onset of the tremor. If the tremor persists, treatment that follows may include drug therapy, lifestyle changes, and more invasive forms of treatment, such as surgery and thalamic deep brain stimulation.
Intention tremors are known to be very difficult to treat with pharmacotherapy and drugs. Although there is no established pharmacological treatment for an intention tremor, several drugs have been found to have positive effects on intention tremors and are used as treatment by many health professionals. Isoniazid, buspirone hydrochloride, glutethimide, carbamazepine, clonazepam, topiramate, zofran, propranolol and primidone have all seen moderate results in treating intention tremor and can be prescribed treatments. Isoniazid inhibits γ-aminobutyric acid-aminotransferase, which the first step in enzymatic breakdown of GABA, thus increasing GABA, the major inhibitory neurotransmitter in the central nervous system. This causes a reduction in cerebellar ataxias. Another neurotransmitter targeted by drugs that has been found to alleviate intention tremors is serotonin. The agonist buspirone hydrochloride, which decreases serotonin's function in the central nervous system, has been viewed as an effective treatment of intention tremors.
Physical therapy has had great results in reducing tremors but usually does not cure them. Relaxation techniques, such as meditation, yoga, hypnosis, and biofeedback, have seen some results with tremors. Wearing wrist weights which weigh down one's hands as they make movements, masking much of the tremor, is a proven home remedy. This is not a treatment, since wearing the weights does not have any lasting effects when they are not on. However, they do help the individual cope with the tremor immediately.
A more radical treatment that is used in individuals who do not respond to drug therapy, physical therapy, or any other treatment listed above, with moderate to severe intention tremors, is surgical intervention. Deep brain stimulation and surgical lesioning of the thalamic nuclei has been found to be an effective long-term treatment with intention tremors.
Deep brain stimulation treats intention tremors but does not help related diseases or disorders such as dyssynergia and dysmetria. Deep brain stimulation involves the implantation of a device called a neurostimulator, sometimes called a 'brain pacemaker'. It sends electrical impulses to specific parts of the brain, changing brain activity in a controlled manner. In the case of an intention tremor, the thalamic nuclei is the region targeted for treatment. This form of treatment causes reversible changes and does not cause any permanent lesions. Since it is reversible, deep brain stimulation is considered fairly safe: Reduction in tremor amplitude is almost guaranteed and sometimes resolved. Some individuals with multiple sclerosis have seen sustained benefits in MS progress.
Thalamotomy is another surgical treatment where lesions of the thalamus nucleus are created to disrupt the tremor circuit. Thalamotomy has been used to treat many forms of tremors, including those that arise from trauma, multiple sclerosis, stroke, and those whose cause it unknown. This is a very invasive, high-risk treatment with many negative effects, such as multiple sclerosis worsening, cognitive dysfunction, worsening of dysarthria, and dysphagia. Immediate positive effects are seen in individuals treated with a thalamotomy procedure. However, the tremor often comes back; it is not a complete treatment. Thalamotomy is in clinical trials to determine the validity of the treatment of intention tremors with all its high risks.
In terms of treatment for neuromuscular diseases (NMD), "exercise" might be a way of managing them, as NMD individuals would gain muscle strength. In a study aimed at results of exercise, in muscular dystrophy and Charcot-Marie-Tooth disease, the later benefited while the former did not show benefit; therefore, it depends on the disease Other management routes for NMD should be based on medicinal and surgical procedures, again depending on the underlying cause.
As of 2010, there was no cure for MMND. People with MMND are given supportive care to help them cope, which can include physical therapy, occupational therapy, counselling, and hearing aids.
Multifocal motor neuropathy is normally treated by receiving intravenous immunoglobulin (IVIG), which can in many cases be highly effective, or immunosuppressive therapy with cyclophosphamide or rituximab. Steroid treatment (prednisone) and plasmapheresis are no longer considered to be useful treatments; prednisone can exacerbate symptoms. IVIg is the primary treatment, with about 80% of patients responding, usually requiring regular infusions at intervals of 1 week to several months. Other treatments are considered in case of lack of response to IVIg, or sometimes because of the high cost of immunoglobulin. Subcutaneous immunoglobulin is under study as a less invasive, more-convenient alternative to IV delivery.
Since pseudobulbar palsy is a syndrome associated with other diseases, treating the underlying disease may eventually reduce the symptoms of pseudobulbar palsy.
Possible pharmacological interventions for pseudobulbar affect include the tricyclic antidepressants, serotonin reuptake inhibitors, and a novel approach utilizing dextromethorphan and quinidine sulfate. Nuedexta is an FDA approved medication for pseudobulbar affect. Dextromethorphan, an N-methyl-D-aspartate receptor antagonist, inhibits glutamatergic transmission in the regions of the brainstem and cerebellum, which are hypothesized to be involved in pseudobulbar symptoms, and acts as a sigma ligand, binding to the sigma-1 receptors that mediate the emotional motor expression.
Inadequate magnesium intake can cause fasciculations, especially after a magnesium loss due to severe diarrhea. Over-exertion and heavy alcohol consumption are also risk factors for magnesium loss. As 70–80% of the adult population does not consume the recommended daily amount of magnesium, inadequate intake may also be a common cause. Treatment consists of increased intake of magnesium from dietary sources such as nuts (especially almonds), bananas, and spinach. Magnesium supplements or pharmaceutical magnesium preparations may also be taken. However, too much magnesium may cause diarrhea, resulting in dehydration and nutrient loss (including magnesium itself, leading to a net loss, rather than a gain). It is well known as a laxative (Milk of Magnesia), though chelated magnesium can largely reduce this effect. Cheaper methods of the chelation process may be unsatisfactory for some people (e.g. mild diarrhea). Magnesium supplements recommend that they be taken only with meals, and not on an empty stomach.
Fasciculation also often occurs during a rest period after sustained stress, such as that brought on by unconsciously tense muscles. Reducing stress and anxiety is therefore another useful treatment.
There is no proven treatment for fasciculations in people with ALS. Among patients with ALS, fasciculation frequency is not associated with the duration of ALS and is independent of the degree of limb weakness and limb atrophy. No prediction of ALS disease duration can be made based on fasciculation frequency alone.
The treatment to battle the disease chorea-acanthocytosis is completely symptomatic. For example, Botulinum toxin injections can help to control orolingual dystonia.
Deep Brain Stimulation is a treatment that has varied effects on the people suffering from the symptoms of this disease, for some it has helped in a large way and for other people it did not help whatsoever, it is more effective on specific symptoms of the disease. Patients with chorea-acanthocytosis should undergo a cardiac evaluation every 5 years to look for cardiomyopathy.
Orthotic devices can be used to support the body and to aid walking. For example, orthotics such as AFO's (ankle foot orthosis) are used to stabilise the foot and to aid gait, TLSO's (thoracic lumbar sacral orthosis) are used to stabilise the torso. Assistive technologies may help in managing movement and daily activity and greatly increase the quality of life.
Treatment is palliative, not curative (as of 2009).
Treatment options for lower limb weakness such as foot drop can be through the use of Ankle Foot Orthoses (AFOs) which can be designed or selected by an Orthotist based upon clinical need of the individual. Sometimes tuning of rigid AFOs can enhance knee stability.
This approach aims at increasing expression (activity) of the "SMN2" gene, thus increasing the amount of full-length SMN protein available.
- Oral salbutamol (albuterol), a popular asthma medicine, showed therapeutic potential in SMA both "in vitro" and in three small-scale clinical trials involving patients with SMA types 2 and 3, besides offering respiratory benefits.
A few compounds initially showed promise but failed to demonstrate efficacy in clinical trials:
- Butyrates (sodium butyrate and sodium phenylbutyrate) held some promise in "in vitro" studies but a clinical trial in symptomatic people did not confirm their efficacy. Another clinical trial in pre-symptomatic types 1–2 infants was completed in 2015 but no results have been published.
- Valproic acid was widely used in SMA on experimental basis in the 1990s and 2000s because "in vitro" research suggested its moderate effectiveness. However, it demonstrated no efficacy in achievable concentrations when subjected to a large clinical trial. It has also been proposed that it may be effective in a subset of people with SMA but its action may be suppressed by fatty acid translocase in others. Others argue it may actually aggravate SMA symptoms.
- Hydroxycarbamide (hydroxyurea) was shown effective in mouse models and subsequently commercially researched by Novo Nordisk, Denmark, but demonstrated no effect on people with SMA in subsequent clinical trials.
Compounds which increased "SMN2" activity "in vitro" but did not make it to the clinical stage include growth hormone, various histone deacetylase inhibitors, benzamide M344, hydroxamic acids (CBHA, SBHA, entinostat, panobinostat, trichostatin A, vorinostat), prolactin as well as natural polyphenol compounds like resveratrol and curcumin. Celecoxib, a p38 pathway activator, is sometimes used off-label by people with SMA based on a single animal study but such use is not backed by clinical-stage research.
When treating hemiballismus, it is first important to treat whatever may be causing the manifestation of this disorder. This could be hyperglycemia, infections, or neoplastic lesions. Some patients may not even need treatment because the disorder is not severe and can be self – limited.
Dopamine Blockers
When pharmacological treatment is necessary, the most standard type of drug to use is an antidopaminergic drug. Blocking dopamine is effective in about ninety percent of patients. Perphenazine, pimozide, haloperidol, and chlorpromazine are standard choices for treatment. Scientists are still unsure as to why this form of treatment works, as dopamine has not been directly linked to hemiballismus.
Anticonvulsants
An anticonvulsant called topiramate has helped patients in three cases and may be a viable treatment for the future.
ITB Therapy
Intrathecal baclofen (ITB) therapy is used to treat a variety of movement disorders such as cerebral palsy and multiple sclerosis. It can also be a possibility to help treat hemiballismus. In one case, before ITB the patient had an average of 10-12 ballism episodes of the right lower limb per hour. During episodes, the right hip would flex up to about 90 degrees, with a fully extended knee. After an ITB pump was implanted and the correct dosage was found, the frequency of ballistic right leg movements decreased to about three per day, and the right hip flexed to only 30 degrees. The patient was also able to better isolate individual distal joint movements in the right lower limb. The patient currently receives 202.4 microg/day of ITB and continues to benefit almost 6 years after the ITB pump was implanted.
Botulinum Injections
New uses for botulinum toxin have included treatment of hemiballismus. However, this is still in the early stages of testing. This treatment deals with the muscular manifestations of hemiballismus as opposed to the neurological causes.
Tetrabenazine
Tetrabenazine has been used to treat other movement disorders, but is now being used to treat hemiballismus. Patients using this medication have had a dramatic response. However, lowering the dosage leads to a return of symptoms. This drug works by depleting dopamine.
Antipsychotics
In one case, a patient had not been responding to haloperidol, thus the physician tried olanzapine. The patient made a significant recovery. More research is being performed on the use of these types of drugs in treating hemiballismus.
Functional Neurosurgery
Surgery as a treatment should only be used on patients with severe hemiballismus that has not responded to treatment. Lesioning of the globus pallidus or deep brain stimulation of the globus pallidus are procedures that can be used on humans. Usually, lesioning is favored over deep brain stimulation because of the maintenance required to continue stimulating the brain correctly and effectively.
There is no known cure for neuromyotonia, but the condition is treatable. Anticonvulsants, including phenytoin and carbamazepine, usually provide significant relief from the stiffness, muscle spasms, and pain associated with neuromyotonia. Plasma exchange and IVIg treatment may provide short-term relief for patients with some forms of the acquired disorder. It is speculated that the plasma exchange causes an interference with the function of the voltage-dependent potassium channels, one of the underlying issues of hyper-excitability in autoimmune neuromyotonia. Botox injections also provide short-term relief. Immunosuppressants such as Prednisone may provide long term relief for patients with some forms of the acquired disorder.
There is no known cure to DSMA1, and care is primarily supportive. Patients require respiratory support which may include non-invasive ventilation or tracheal intubation. The child may also undergo additional immunisations and offered antibiotics to prevent respiratory infections. Maintaining a healthy weight is also important. Patients are at risk of undernutrition and weight loss because of the increased energy spent for breathing. Physical and occupational therapy for the child can be very effective in maintaining muscle strength.
There is no published practice standard for the care in DSMA1, even though the Spinal Muscular Atrophy Standard of Care Committee has been trying to come to a consensus on the care standards for DSMA1 patients. The discrepancies in the practitioners’ knowledge, family resources, and differences in patient’s culture and/or residency have played a part in the outcome of the patient.
PBP is aggressive and relentless, and there were no treatments for the disease as of 2005. However, early detection of PBP is the optimal scenario in which doctors can map out a plan for management of the disease. This typically involves symptomatic treatments that are frequently used in many lower motor disorders.
Because lack of sialic acid appears to be part of the pathology of IBM caused by GNE mutations, clinical trials with sialic acid supplements, and with a precursor of sialic acid, N-Acetylmannosamine, have been conducted, and as of 2016 further trials were planned.
Patients can often live with PLS for many years and very often outlive their neurological disease and succumb to some unrelated condition. There is currently no effective cure, and the progression of symptoms varies. Some people may retain the ability to walk without assistance, but others eventually require wheelchairs, canes, or other assistive devices.
Some degree of control of the fasciculations may be achieved with the same medication used to treat essential tremor (beta-blockers and anti-seizure drugs). However, often the most effective approach to treatment is to treat any accompanying anxiety. No drugs, supplements, or other treatments have been found that completely control the symptoms. In cases where fasciculations are caused by magnesium deficiency, supplementing magnesium can be effective in reducing symptoms.
In many cases, the severity of BFS symptoms can be significantly reduced through a proactive approach to decrease the overall daily stress. Common ways to reduce stress include: exercising more, sleeping more, working less, meditation, and eliminating all forms of dietary caffeine (e.g. coffee, chocolate, cola, and certain over-the counter medications).
If pain or muscle aches are present alongside fasciculations, patients may be advised to take over-the-counter pain medications such as ibuprofen or acetaminophen during times of increased pain. Other forms of pain management may also be employed. Prior to taking any over-the-counter medications, individuals should initiate discussions with their health care provider(s) to avoid adverse effects associated with long-term usage or preexisting conditions.
The importance of correctly recognizing progressive muscular atrophy as opposed to ALS is important for several reasons.
- 1) the prognosis is a little better. A recent study found the 5-year survival rate in PMA to be 33% (vs 20% in ALS) and the 10-year survival rate to be 12% (vs 6% in ALS).
- 2) Patients with PMA do not suffer from the cognitive change identified in certain groups of patients with MND.
- 3) Because PMA patients do not have UMN signs, they usually do not meet the "World Federation of Neurology El Escorial Research Criteria" for “Definite” or “Probable” ALS and so are ineligible to participate in the majority of clinical research trials such as drugs trials or brain scans.
- 4) Because of its rarity (even compared to ALS) and confusion about the condition, some insurance policies or local healthcare policies may not recognize PMA as being the life-changing illness that it is. In cases where being classified as being PMA rather than ALS is likely to restrict access to services, it may be preferable to be diagnosed as "slowly progressive ALS" or "lower motor neuron predominant" ALS.
An initial diagnosis of PMA could turn out to be slowly progressive ALS many years later, sometimes even decades after the initial diagnosis. The occurrence of upper motor neurone symptoms such as brisk reflexes, spasticity, or a Babinski sign would indicate a progression to ALS; the correct diagnosis is also occasionally made on autopsy.
Risk factors for benign fasciculations may include the use of anticholinergic drugs over long periods. In particular, these include ethanolamines such as diphenhydramine (brand names Benadryl, Dimedrol, Daedalon and Nytol), used as an antihistamine and sedative, and dimenhydrinate (brand names Dramamine, Driminate, Gravol, Gravamin, Vomex, and Vertirosan) for nausea and motion sickness. Persons with benign fasciculation syndrome (BFS) may experience paraesthesia (especially numbness) shortly after taking such medication; fasciculation episodes begin as the medication wears off.
Stimulants can cause fasciculations directly. These include caffeine, pseudoephedrine (Sudafed), amphetamines, and the asthma bronchodilators salbutamol (brand names Proventil, Combivent, Ventolin). Medications used to treat attention deficit disorder (ADHD) often contain stimulants as well, and are common causes of benign fasciculations. Since asthma and ADHD are much more serious than the fasciculations themselves, this side effect may have to be tolerated by the patient after consulting a physician or pharmacist.
The depolarizing neuromuscular blocker succinylcholine causes fasciculations. It is a normal side effect of the drug's administration, and can be prevented with a small dose of a nondepolarizing neuromuscular blocker prior to the administration of succinylcholine, often 10% of a nondepolarizing NMB's induction dose.
Even if a drug such as caffeine causes fasciculations, that does not necessarily mean it is the only cause. For example, a very slight magnesium deficiency by itself (see below) might not be enough for fasciculations to occur, but when combined with caffeine, the two factors together could be enough.
One treatment methodogy that is very promising for the treatment of camptocormia is deep brain stimulation. Previously, deep brain stimulation and bilateral stimulation of the subthalamic nucleus and/or globus pallidus internus have been used to treat patients with Parkinson's disease. Studies have shown that similar treatments could be used on patients with severe camptocormia. By using the Burke-Fahn-Marsden Dystonia Rating Scale before and after treatment, it was found that patients experienced significant functional improvement in the ability to walk.
There is no known cure to BVVL however a Dutch group have reported the first promising attempt at treatment of the disorder with high doses of riboflavin. This Riboflavin protocol seems to be beneficial in almost all cases. Specialist medical advice is of course essential to ensure the protocol is understood and followed correctly.
Patients will almost certainly require additional symptomatic treatment and supportive care. This must be specifically customized to the needs of the individual but could include mobility aids, hearing aids or cochlear implants, vision aids, gastrostomy feeding and assisted ventilation, while steroids may or may not help patients.
The first report of BVVL syndrome in Japanese literature was of a woman that had BVVL and showed improvement after such treatments. The patient was a sixty-year-old woman who had symptoms such as sensorineural deafness, weakness, and atrophy since she was 15 years old. Around the age of 49 the patient was officially diagnosed with BVVL, incubated, and then attached to a respirator to improve her CO2 narcosis. After the treatments, the patient still required respiratory assistance during sleep; however, the patient no longer needed assistance by a respirator during the daytime.