Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment depends on the underlying cause. Treatments include iced saline, and topical vasoconstrictors such as adrenalin or vasopressin. Selective bronchial intubation can be used to collapse the lung that is bleeding. Also, endobronchial tamponade can be used. Laser photocoagulation can be used to stop bleeding during bronchoscopy. Angiography of bronchial arteries can be performed to locate the bleeding, and it can often be embolized. Surgical option is usually the last resort, and can involve, removal of a lung lobe or removal of the entire lung. Non–small-cell lung cancer can also be treated with erlotinib or gefitinib. Cough suppressants can increase the risk of choking.
If the person is awake and able to breathe often all that is requires is providing extra oxygen while the operating room is prepared for bronchoscopy.
If a children less than one and is unable to breathe at all then five back blows followed by five chest thrusts should be done. In children over the age of one abdominal thrusts are recommended.
If this is not effective than bag mask ventilation is recommended. Next laryngoscopy can be tried to look and see if the foreign body can be removed. If the above is not effective than intubation or cricothyrotomy can be tried.
There are many advanced medical treatments to relieve choking or airway obstruction. These include inspection of the airway with a laryngoscope or bronchoscope and removal of the object under direct vision. Severe cases where there is an inability to remove the object may require cricothyrotomy (emergency tracheostomy). Cricothyrotomy involves making an incision in a patient's neck and inserting a tube into the trachea in order to bypass the upper airways. The procedure is usually only performed when other methods have failed. In many cases, an emergency tracheostomy can save a patient's life, but if performed incorrectly, it may end the patient’s life.
The Heimlich Maneuver (abdominal thrusts) can be performed can be self-administered. Self-administration of this maneuver requires positioning of one's own abdomen over a chair, railing, or countertop and driving the abdomen upon the object with sharp, upward thrust. This serves as a substitute for thrusts made with the hands by another person. One study showed that these self-administered abdominal thrusts were just as effective as those performed by another person, although obese individuals were not included in the study. Self-assist choking devices are another self-treatment option. This device is used to produce the inward and upward force of traditional abdominal thrusts.
Multiple sources of evidence suggest, that one of promising approaches for self treatment during choking could be by applying the head-down (inversed) position.
Hemoptysis is the coughing up of blood or blood-stained mucus from the bronchi, larynx, trachea, or lungs. This can occur with lung cancer, infections such as tuberculosis, bronchitis, or pneumonia, and certain cardiovascular conditions. Hemoptysis is considered massive at . In such cases, there are always severe injuries. The primary danger comes from choking, rather than blood loss.
In one study, peanuts were the most common obstruction. In addition to peanuts, hot dogs, and grapes, latex balloons are also a serious choking hazard in children that can result in death. A latex balloon will conform to the shape of the trachea, blocking the airway and making it difficult to expel with the Heimlich maneuver.
When laryngospasm is coincident with a cold or flu, it may be helpful for some sufferers to take acid reflux medication to limit the irritants in the area. If a cough is present, then treat a wet cough; but limit coughing whenever possible, as it is only likely to trigger a spasm. Drink water or tea to keep the area from drying up. Saline drops also help to keep the area moist. Pseudoephederine may also help to clear any mucus that may cause coughing and thereby triggering more spasms.
Minor laryngospasm will generally resolve spontaneously in the majority of cases.
Laryngospasm in the operating room is treated by hyperextending the patient's neck and administering assisted ventilation with 100% oxygen. In more severe cases it may require the administration of an intravenous muscle relaxant, such as Succinylcholine, and reintubation.
When Gastroesophageal Reflux Disease (GERD) is the trigger, treatment of GERD can help manage laryngospasm. Proton pump inhibitors such as Dexlansoprazole (Dexilant), Esomeprazole (Nexium), and Lansoprazole (Prevacid) reduce the production of stomach acids, making reflux fluids less irritant. Prokinetic agents reduce the amount of acid available by stimulating movement in the digestive tract.
Spontaneous laryngospasm can be treated by staying calm and breathing slowly, instead of gasping for air. Drinking (tiny sips) of ice water to wash away any irritants that may be the cause of the spasm can also help greatly.
Patients who are prone to laryngospasm during illness can take measures to prevent irritation such as antacids to avoid acid reflux, and constantly drinking water or tea keep the area clear of irritants.
Additionally, laryngospasms can result from hypocalcemia, causing muscle spasms and/or tetany. Na+ channels remain open even if there is very little increase in the membrane potential. This affects the small muscles of the vocal folds.
Choking horses should be deprived of food and drink pending veterinary attention, so as not to increase the obstructive load within the esophagus. The veterinarian will often sedate the horse and administer spasmolytics, such as butylscopolamine, to help the esophagus to relax. Once the muscles of the esophagus no longer force the food down the throat (active peristalsis), it may slip down on its own accord. If spasmolytics do not solve the problem, the veterinarian will usually pass a stomach tube through one of the nostrils and direct it into the esophagus until the material is reached, at which point "gentle" pressure is applied to manually push the material down. Gentle warm water lavage (water sent through the stomach tube, to soften the food material) may be required to help the obstructing matter pass more easily, but caution should be exercised to prevent further aspiration of fluid into the trachea.
Refractory cases are sometimes anesthetised, with an orotracheal tube placed to prevent further aspiration and to allow for more vigorous lavage. Disruption of the impacted material can sometimes be achieved via endoscopy. If these methods still do not lead to results, the horse may require surgery to remove the material.
Some workers have advocated the use of oxytocin in choke, on the grounds that it decreases the esophageal muscular tone. However, this technique is not suitable in pregnant mares, as it may lead to abortion.
One treatment for obstructive hypopnea is continuous positive airway pressure (CPAP). CPAP is a treatment in which the patient wears a mask over the nose and/or mouth. An air blower forces air through the upper airway. The air pressure is adjusted so that it is just enough to maintain the oxygen saturation levels in the blood. Another treatment is sometimes a custom fitted oral appliance. The American Academy of Sleep Medicine's protocol for obstructive sleep apnea (OSA) recommends oral appliances for those who prefer them to CPAP and have mild to moderate sleep apnea or those that do not respond to/cannot wear a CPAP. Severe cases of OSA may be treated with an oral appliance if the patient has had a trial run with a CPAP. Oral Appliances should be custom made by a dentist with training in dental sleep medicine. Mild obstructive hypopnea can often be treated by losing weight or by avoiding sleeping on one's back. Also quitting smoking, and avoiding alcohol, sedatives and hypnotics (soporifics) before sleep can be quite effective. Surgery is generally a last resort in hypopnea treatment, but is a site-specific option for the upper airway. Depending on the cause of obstruction, surgery may focus on the soft palate, the uvula, tonsils, adenoids or the tongue. There are also more complex surgeries that are performed with the adjustment of other bone structures - the mouth, nose and facial bones.
After the material has passed, a veterinarian may try to prevent the onset of aspiration pneumonia by placing the horse on broad-spectrum antibiotics. The animal should be monitored for several days to ensure that it does not develop pneumonia, caused by inhalation of bacteria-rich food material into the lungs.
The material caught in a horse's throat usually causes inflammation, which may later lead to scarring. Scarring reduces the diameter of the esophagus (a stenosis or stricture), which increases the chance that the horse may choke again. The veterinarian may therefore place the horse on a course of NSAIDs, to help to control the inflammation of the esophagus.
Often the horse will only be fed softened food for a few days, allowing the esophagus to heal, before it is allowed to gradually resume its normal diet (e.g. hay and unsoaked grain). Horses with re-occurring chokes may require their diet to be changed.
People with neuromuscular disorders or hypoventilation syndromes involving failed respiratory drive experience central hypoventilation. The most common treatment for this form is the use of non-invasive ventilation such as a BPAP machine.
Sleeping on the back has been found to reduce the risk of SIDS. It is thus recommended by the American Academy of Pediatrics and promoted as a best practice by the US National Institute of Child Health and Human Development (NICHD) "Safe to Sleep" campaign. The incidence of SIDS has fallen in a number of countries in which this recommendation has been widely adopted. Sleeping on the back does not appear to increase the risk of choking even in those with gastroesophageal reflux disease. While infants in this position may sleep more lightly this is not harmful. Sharing the same room as one's parents but in a different bed may decrease the risk by half.
In colder environments where bedding is required to maintain a baby's body temperature, the use of a "baby sleep bag" or "sleep sack" is becoming more popular. This is a soft bag with holes for the baby's arms and head. A zipper allows the bag to be closed around the baby. A study published in the "European Journal of Pediatrics" in August 1998 has shown the protective effects of a sleep sack as reducing the incidence of turning from back to front during sleep, reinforcing putting a baby to sleep on its back for placement into the sleep sack and preventing bedding from coming up over the face which leads to increased temperature and carbon dioxide rebreathing. They conclude in their study, "The use of a sleeping-sack should be particularly promoted for infants with a low birth weight." The American Academy of Pediatrics also recommends them as a type of bedding that warms the baby without covering its head.
There is limited evidence for medication but acetazolamide "may be considered" for the treatment of central sleep apnea; it also found that zolpidem and triazolam may be considered for the treatment of central sleep apnea, but "only if the patient does not have underlying risk factors for respiratory depression". Low doses of oxygen are also used as a treatment for hypoxia but are discouraged due to side effects.
Often, correction of the nasal passages needs to be performed in addition to correction of the oropharynx passage. Septoplasty and turbinate surgery may improve the nasal airway.
Asphyxia or asphyxiation is a condition of severely deficient supply of oxygen to the body that arises from abnormal breathing. An example of asphyxia is choking. Asphyxia causes generalized hypoxia, which affects primarily the tissues and organs. There are many circumstances that can induce asphyxia, all of which are characterized by an inability of an individual to acquire sufficient oxygen through breathing for an extended period of time. Asphyxia can cause coma or death.
In 2015 about 9.8 million cases of unintentional suffocation occurred which resulted in 35,600 deaths. The word asphyxia is from Ancient Greek "without" and , "squeeze" (throb of heart).
Smothering is the mechanical obstruction of the flow of air from the environment into the mouth and/or nostrils, for instance, by covering the mouth and nose with a hand, pillow, or a plastic bag. Smothering can be either partial or complete, where partial indicates that the person being smothered is able to inhale some air, although less than required. In a normal situation, smothering requires at least partial obstruction of both the nasal cavities and the mouth to lead to asphyxia. Smothering with the hands or chest is used in some combat sports to distract the opponent, and create openings for transitions, as the opponent is forced to react to the smothering.
In some cases, when performing certain routines, smothering is combined with simultaneous compressive asphyxia. One example is overlay, in which an adult accidentally rolls over onto an infant during co-sleeping, an accident that often goes unnoticed and is mistakenly thought to be sudden infant death syndrome. Other accidents involving a similar mechanism are cave-ins or when an individual is buried in sand or grain.
In homicidal cases, the term burking is often ascribed to a killing method that involves simultaneous smothering and compression of the torso. The term "burking" comes from the method William Burke and William Hare used to kill their victims during the West Port murders. They killed the usually intoxicated victims by sitting on their chests and suffocating them by putting a hand over their nose and mouth, while using the other hand to push the victim's jaw up. The corpses had no visible injuries, and were supplied to medical schools for money.
Although orbital cellulitis is considered an ophthalmic emergency the prognosis is good if prompt medical treatment is received.
Immediate treatment is very important for someone with orbital cellulitis. Treatment typically involves intravenous (IV) antibiotics in the hospital and frequent observation (every 4–6 hours). Along with this several laboratory tests are run including a complete blood count, differential, and blood culture.
- Antibiotic therapy – Since orbital cellulitis is commonly caused by "Staphylococcus" and "Streptococcus" species both penicillins and cephalosporins are typically the best choices for IV antibiotics. However, due to the increasing rise of MRSA (methicillin-resistant "Staphylococcus aureus") orbital cellulitis can also be treated with Vancomycin, Clindamycin, or Doxycycline. If improvement is noted after 48 hours of IV antibiotics, healthcare professions can then consider switching a patient to oral antibiotics (which must be used for 2–3 weeks).
- Surgical intervention – An abscess can threaten the vision or neurological status of a patient with orbital cellulitis, therefore sometimes surgical intervention is necessary. Surgery typically requires drainage of the sinuses and if a subperiosteal abscess is present in the medial orbit, drainage can be performed endoscopically. Post-operatively, patients must follow up regularly with their surgeon and remain under close observation.
Anti-ligature is the "prevention" of tying or binding. Anti-ligature devices are used to prevent vulnerable people from accidentally or intentionally self harming, (typically hanging). Anti-ligature devices and equipment are primarily used where people are considered to be 'at risk' such as hospitals, prisons and nursing homes, but can also be found in some offices and schools.
They are designed to withstand high levels of abuse and as a result are constructed from solid stainless steel and have minimal moving parts. They typically feature sloped or curved corners to which nothing can be attached and are proportioned at specific critical angles and distances with no protruding parts to prevent ligature points.
Examples of anti-ligature devices can include electronically controlled tap-less wash basins and seat-less WC pans with concealed WC cisterns and anti-ligature shower controls and shower heads.
Parasitic infections can usually be treated with antiparasitic drugs.
Albendazole and mebendazole have been the treatments administered to entire populations to control hookworm infection. However, it is a costly option and both children and adults become reinfected within a few months after deparasitation occurs raising concerns because the treatment has to repeatedly be administered and drug resistance may occur.
Another medication administered to kill worm infections has been pyrantel pamoate. For some parasitic diseases, there is no treatment and, in the case of serious symptoms, medication intended to kill the parasite is administered, whereas, in other cases, symptom relief options are used. Recent papers have also proposed the use of viruses to treat infections caused by protozoa.
Treatment varies according to type and severity of eating disorder, and usually more than one treatment option is utilized. There is no well-established treatment for eating disorders, meaning that current views about treatment are based mainly on clinical experience. Family doctors play an important role in early treatment of people with eating disorders by encouraging those who are also reluctant to see a psychiatrist. Treatment can take place in a variety of different settings such as community programs, hospitals, day programs, and groups. The American Psychiatric Association (APA) recommends a team approach to treatment of eating disorders. The members of the team are usually a psychiatrist, therapist, and registered dietitian, but other clinicians may be included.
That said, some treatment methods are:
- Cognitive behavioral therapy (CBT), which postulates that an individual's feelings and behaviors are caused by their own thoughts instead of external stimuli such as other people, situations or events; the idea is to change how a person thinks and reacts to a situation even if the situation itself does not change. See Cognitive behavioral treatment of eating disorders.
- Acceptance and commitment therapy: a type of CBT
- Cognitive Remediation Therapy (CRT), a set of cognitive drills or compensatory interventions designed to enhance cognitive functioning.
- Dialectical behavior therapy
- Family therapy including "conjoint family therapy" (CFT), "separated family therapy" (SFT) and Maudsley Family Therapy.
- Behavioral therapy: focuses on gaining control and changing unwanted behaviors.
- Interpersonal psychotherapy (IPT)
- Cognitive Emotional Behaviour Therapy (CEBT)
- Music Therapy
- Recreation Therapy
- Art therapy
- Nutrition counseling and Medical nutrition therapy
- Medication: Orlistat is used in obesity treatment. Olanzapine seems to promote weight gain as well as the ability to ameliorate obsessional behaviors concerning weight gain. zinc supplements have been shown to be helpful, and cortisol is also being investigated.
- Self-help and guided self-help have been shown to be helpful in AN, BN and BED; this includes support groups and self-help groups such as Eating Disorders Anonymous and Overeaters Anonymous.
- Psychoanalysis
- Inpatient care
There are few studies on the cost-effectiveness of the various treatments. Treatment can be expensive; due to limitations in health care coverage, people hospitalized with anorexia nervosa may be discharged while still underweight, resulting in relapse and rehospitalization.
For children with anorexia, the only well-established treatment is the family treatment-behavior. For other eating disorders in children, however, there is no well-established treatments, though family treatment-behavior has been used in treating bulimia.
It is important that parents and caretakers remain calm, take first aid measures, and carefully observe the child. If a child is having a febrile seizure, parents and caregivers should do the following:
- Note the start time of the seizure. If the seizure lasts longer than 5 minutes, call an ambulance. The child should be taken immediately to the nearest medical facility for diagnosis and treatment.
- Call an ambulance if the seizure is less than 5 minutes but the child does not seem to be recovering quickly.
- Gradually place the child on a protected surface such as the floor or ground to prevent accidental injury. Do not restrain or hold a child during a convulsion.
- Position the child on his or her side or stomach to prevent choking. When possible, gently remove any objects from the child’s mouth. Nothing should ever be placed in the child's mouth during a convulsion. These objects can obstruct the child's airway and make breathing difficult.
- Seek immediate medical attention if this is the child’s first febrile seizure and take the child to the doctor once the seizure has ended to check for the cause of the fever. This is especially urgent if the child shows symptoms of stiff neck, extreme lethargy, or abundant vomiting, which may be signs of meningitis, an infection over the brain surface.
In those who have prolonged seizures intravenous lorazepam is recommended. The other benzodiazepines—midazolam and diazepam—are also reasonable options.
Strangling involves one or several mechanisms that interfere with the normal flow of oxygen into the brain:
- Compression of the carotid arteries or jugular veins—causing cerebral ischemia.
- Compression of the laryngopharynx, larynx, or trachea—causing asphyxia.
- Stimulation of the carotid sinus reflex—causing bradycardia, hypotension, or both.
Depending on the particular method of strangulation, one or several of these typically occur in combination; vascular obstruction is usually the main mechanism. Complete obstruction of blood flow to the brain is associated with irreversible neurological damage and death, but during strangulation there is still unimpeded blood flow in the vertebral arteries. Estimates have been made that significant occlusion of the carotid arteries and jugular veins occurs with a pressure of around , while the trachea demands six times more at approximately .
As in all cases of strangulation, the rapidity of death can be affected by the susceptibility to carotid sinus stimulation. Carotid sinus reflex death is sometimes considered a mechanism of death in cases of strangulation, but it remains highly disputed. The reported time from application to unconsciousness varies from 7–14 seconds if effectively applied to one minute in other cases, with death occurring minutes after unconsciousness.