Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
This procedure involves removal of amniotic fluid periodically throughout the pregnancy under the assumption that the extra fluid in the recipient twin can cause preterm labor, perinatal mortality, or tissue damage. In the case that the fluid does not reaccumulate, the reduction of amniotic fluid stabilizes the pregnancy. Otherwise the treatment is repeated as necessary. There is no standard procedure for how much fluid is removed each time. There is a danger that if too much fluid is removed, the recipient twin could die. This procedure is associated with a 66% survival rate of at least one fetus, with a 15% risk of cerebral palsy and average delivery occurring at 29 weeks gestation.
The World Health Organization recommends that women with severe hypertension during pregnancy should receive treatment with anti-hypertensive agents. Severe hypertension is generally considered systolic BP of at least 160 or diastolic BP of at least 110. Evidence does not support the use of one anti-hypertensive over another. The choice of which agent to use should be based on the prescribing clinician's experience with a particular agent, its cost, and its availability. Diuretics are not recommended for prevention of preeclampsia and its complications. Labetolol, Hydralazine and Nifedipine are commonly used antihypertensive agents for hypertension in pregnancy. ACE inhibitors and angiotensin receptor blockers are contraindicated as they affect fetal development.
The goal of treatment of severe hypertension in pregnancy is to prevent cardiovascular, kidney, and cerebrovascular complications. The target blood pressure has been proposed to be 140–160 mmHg systolic and 90–105 mmHg diastolic, although values are variable.
This procedure involves the tearing of the dividing membrane between fetuses such that the amniotic fluid of both twins mixes under the assumption that pressure is different in either amniotic sac and that its equilibration will ameliorate progression of the disease. It has not been proven that pressures are different in either amniotic sac. Use of this procedure can preclude use of other procedures as well as make difficult the monitoring of disease progression. In addition, tearing the dividing membrane has contributed to cord entanglement and demise of fetuses through physical complications.
The intrapartum and postpartum administration of magnesium sulfate is recommended in severe pre-eclampsia for the prevention of eclampsia. Further, magnesium sulfate is recommended for the treatment of eclampsia over other anticonvulsants. Magnesium sulfate acts by interacting with NMDA receptors.
Bed rest has not been found to improve outcomes and therefore is not typically recommended.
Mothers whose fetus is diagnosed with intrauterine growth restriction by ultrasound can use management strategies based on monitoring and delivery methods. One of these monitoring techniques is an umbilical artery Doppler. This method has been shown to decrease risk of morbidity and mortality before and after parturition among IUGR patients.
Time of delivery is also a management strategy and is based on parameters collected from the umbilical artery doppler. Some of these include: pulsatility index, resistance index, and end-diastolic velocities, which are measurements of the fetal circulation.
Hypothermia treatment induced by head cooling or systemic cooling administered within 6 hours of birth for 72 hours has proven beneficial in reducing death and neurological impairments at 18 months of age. This treatment does not completely protect the injured brain and may not improve the risk of death in the most severely hypoxic-ischemic neonates and has also not been proven beneficial in preterm infants. Combined therapies of hypothermia and pharmacological agents or growth factors to improve neurological outcomes are most likely the next direction for damaged neonatal brains, such as after a stroke.
Treatment remains controversial with regards to the risk/benefit ratio, which differs significantly from treatment of stroke in adults. Presence or possibility of organ or limb impairment and bleeding risks are possible with treatments using antithrombotic agents.
Supportive care is the treatment of choice for TTN. This may include withholding oral feeding in periods of extreme tachypnea (over 60 breaths per minute) to prevent aspiration, supplemental oxygen, and CPAP.
Early neonatal mortality refers to a death of a live-born baby within the first seven days of life, while late neonatal mortality covers the time after 7 days until before 28 days. The sum of these two represents the neonatal mortality. Some definitions of the PNM include only the early neonatal mortality. Neonatal mortality is affected by the quality of in-hospital care for the neonate. Neonatal mortality and postneonatal mortality (covering the remaining 11 months of the first year of life) are reflected in the Infant Mortality Rate.
Fetal mortality refers to stillbirths or fetal death. It encompasses any death of a fetus after 20 weeks of gestation or 500 gm. In some definitions of the PNM early fetal mortality (week 20-27 gestation) is not included, and the PNM may only include late fetal death and neonatal death. Fetal death can also be divided into death prior to labor, antenatal (antepartum) death, and death during labor, intranatal (intrapartum) death.
Perinatal asphyxia, neonatal asphyxia or birth asphyxia is the medical condition resulting from deprivation of oxygen to a newborn infant that lasts long enough during the birth process to cause physical harm, usually to the brain. Hypoxic damage can occur to most of the infant's organs (heart, lungs, liver, gut, kidneys), but brain damage is of most concern and perhaps the least likely to quickly or completely heal. In more pronounced cases, an infant will survive, but with damage to the brain manifested as either mental, such as developmental delay or intellectual disability, or physical, such as spasticity.
It results most commonly from a drop in maternal blood pressure or some other substantial interference with blood flow to the infant's brain during delivery. This can occur due to inadequate circulation or perfusion, impaired respiratory effort, or inadequate ventilation. Perinatal asphyxia happens in 2 to 10 per 1000 newborns that are born at term, and more for those that are born prematurely. WHO estimates that 4 million neonatal deaths occur yearly due to birth asphyxia, representing 38% of deaths of children under 5 years of age.
Perinatal asphyxia can be the cause of hypoxic ischemic encephalopathy or intraventricular hemorrhage, especially in preterm births. An infant suffering severe perinatal asphyxia usually has poor color (cyanosis), perfusion, responsiveness, muscle tone, and respiratory effort, as reflected in a low 5 minute Apgar score. Extreme degrees of asphyxia can cause cardiac arrest and death. If resuscitation is successful, the infant is usually transferred to a neonatal intensive care unit.
There has long been a scientific debate over whether newborn infants with asphyxia should be resuscitated with 100% oxygen or normal air. It has been demonstrated that high concentrations of oxygen lead to generation of oxygen free radicals, which have a role in reperfusion injury after asphyxia. Research by Ola Didrik Saugstad and others led to new international guidelines on newborn resuscitation in 2010, recommending the use of normal air instead of 100% oxygen.
There is considerable controversy over the diagnosis of birth asphyxia due to medicolegal reasons. Because of its lack of precision, the term is eschewed in modern obstetrics.
Some vertically transmitted infections, such as toxoplasmosis and syphilis, can be effectively treated with antibiotics if the mother is diagnosed early in her pregnancy. Many viral vertically transmitted infections have no effective treatment, but some, notably rubella and varicella-zoster, can be prevented by vaccinating the mother prior to pregnancy.
If the mother has active herpes simplex (as may be suggested by a pap test), delivery by Caesarean section can prevent the newborn from contact, and consequent infection, with this virus.
IgG antibody may play crucial role in prevention of intrauterine infections and extensive research is going on for developing IgG-based therapies for treatment and vaccination.
Fetuses with polyhydramnios are at risk for a number of other problems including cord prolapse, placental abruption, premature birth and perinatal death. At delivery the baby should be checked for congenital abnormalities.
Precipitate delivery may cause intracranial hemorrhage resulting from a sudden change in pressure on the fetal head during rapid expulsion.
It may cause aspiration of amniotic fluid, if unattended at or immediately following delivery.
There may be infection as a result of unsterile delivery.
Intrauterine growth restriction (IUGR) refers to poor growth of a fetus while in the mother's womb during pregnancy. The causes can be many, but most often involve poor maternal nutrition or lack of adequate oxygen supply to the fetus.
At least 60% of the 4 million neonatal deaths that occur worldwide every year are associated with low birth weight (LBW), caused by intrauterine growth restriction (IUGR), preterm delivery, and genetic/chromosomal abnormalities, demonstrating that under-nutrition is already a leading health problem at birth.
Intrauterine growth restriction can result in a baby being Small for Gestational Age (SGA), which is most commonly defined as a weight below the 10th percentile for the gestational age. At the end of pregnancy, it can result in a low birth weight.
Low birthweight, pre-term birth and pre-eclampsia have been associated with maternal periodontitis exposure. But the strength of the observed associations is inconsistent and vary according to the population studied, the means of periodontal assessment and the periodontal disease classification employed. However the best is that the risk of low birth weight can be reduced with very simple therapy. Treatment of periodontal disease during gestation period is safe and reduction in inflammatory burden reduces the risk of preterm birth as well as low birth weight.
Some disorders and conditions can mean that pregnancy is considered high-risk (about 6-8% of pregnancies in the USA) and in extreme cases may be contraindicated. High-risk pregnancies are the main focus of doctors specialising in maternal-fetal medicine.
Serious pre-existing disorders which can reduce a woman's physical ability to survive pregnancy include a range of congenital defects (that is, conditions with which the woman herself was born, for example, those of the heart or , some of which are listed above) and diseases acquired at any time during the woman's life.
Each type of vertically transmitted infection has a different prognosis. The stage of the pregnancy at the time of infection also can change the effect on the newborn.
If monitoring reveals failing control of glucose levels with these measures, or if there is evidence of complications like excessive fetal growth, treatment with insulin might be necessary. This is most commonly fast-acting insulin given just before eating to blunt glucose rises after meals. Care needs to be taken to avoid low blood sugar levels due to excessive insulin. Insulin therapy can be normal or very tight; more injections can result in better control but requires more effort, and there is no consensus that it has large benefits. A 2016 Cochrane review concluded that quality evidence is not yet available to determine the best blood sugar range for improving health for pregnant women with GDM and their babies.
There is some evidence that certain medications by mouth might be safe in pregnancy, or at least, are less dangerous to the developing fetus than poorly controlled diabetes. The medication metformin is better than glyburide. If blood glucose cannot be adequately controlled with a single agent, the combination of metformin and insulin may be better than insulin alone. Another review found good short term safety for both the mother and baby with metformin but unclear long term safety.
People may prefer metformin by mouth to insulin injections. Treatment of polycystic ovarian syndrome with metformin during pregnancy has been noted to decrease GDM levels.
Almost half of the women did not reach sufficient control with metformin alone and needed supplemental therapy with insulin; compared to those treated with insulin alone, they required less insulin, and they gained less weight. With no long-term studies into children of women treated with the drug, there remains a possibility of long-term complications from metformin therapy. Babies born to women treated with metformin have been found to develop less visceral fat, making them less prone to insulin resistance in later life.
The infant is intubated post delivery to stabilize the respiratory problems experienced. Often the skin condition becomes less severe resolving itself to flaky dry skin as the individual grows. No intervention is usually required and the condition becomes less severe as the patient grows. The dry skin symptoms can be managed with topical ointments or creams and the individual remains otherwise healthy.
While active maternal tobacco smoking has well established adverse perinatal outcomes such as LBW, that mothers who smoke during pregnancy are twice as likely to give birth to low-birth weight infants. Review on the effects of passive maternal smoking, also called environmental tobacco exposure (ETS), demonstrated that increased risks of infants with LBW were more likely to be expected in ETS-exposed mothers.
Regarding environmental toxins in pregnancy, elevated blood lead levels in pregnant women, even those well below 10 ug/dL can cause miscarriage, premature birth, and LBW in the offspring. With 10 ug/dL as the Centers for Disease Control and Prevention's “level of concern”, this cut-off value really needs to arise more attentions and implementations in the future.
The combustion products of solid fuel in developing countries can cause many adverse health issues in people. Because a majority of pregnant women in developing countries, where rate of LBW is high, are heavily exposed to indoor air pollution, increased relative risk translates into substantial population attributable risk of 21% of LBW.
One environmental exposure which has been found to increase the risk of low birth weight is particulate matter, a component of ambient air pollution. Because particulate matter is composed of extremely small particles, even nonvisible levels can be inhaled and present harm to the fetus. Particulate matter exposure can cause inflammation, oxidative stress, endocrine disruption, and impaired oxygen transport access to the placenta, all of which are mechanisms for heightening the risk of low birth weight. To reduce exposure to particulate matter, pregnant women can monitor the EPA’s Air Quality Index and take personal precautionary measures such as reducing outdoor activity on low quality days, avoiding high-traffic roads/intersections, and/or wearing personal protective equipment (i.e., facial mask of industrial design). Indoor exposure to particulate matter can also be reduced through adequate ventilation, as well as use of clean heating and cooking methods.
A correlation between maternal exposure to CO and low birth weight has been reported that the effect on birth weight of increased ambient CO was as large as the effect of the mother smoking a pack of cigarettes per day during pregnancy.
It has been revealed that adverse reproductive effects (e.g., risk for LBW) were correlated with maternal exposure to air pollution combustion emissions in Eastern Europe and North America.
Mercury is a known toxic heavy metal that can harm fetal growth and health, and there has been evidence showing that exposure to mercury (via consumption of large oily fish) during pregnancy may be related to higher risks of LBW in the offspring.
It was revealed that, exposure of pregnant women to airplane noise was found to be associated with low birth weight. Aircraft noise exposure caused adverse effects on fetal growth leading to low birth weight and preterm infants.
Miscarriage is the loss of a pregnancy prior to 20 weeks. In the UK miscarriage is defined as the loss of a pregnancy during the first 23 weeks.
There are several misfortunes associated with precipitate delivery for both the mother and the infant. They are classified as maternal and neonatal.
Succinic acid has been studied, and shown effective for both Leighs disease, and MELAS syndrome. If the mutation is in succinate dehydrogenase then there is a build up of succinate, in which case succinic acid won't work so the treatment is with fumaric acid to replace the fumarate than can not be made from succinate. A high-fat, low-carbohydrate diet may be followed if a gene on the X chromosome is implicated in an individual's Leigh syndrome. Thiamine (vitamin B) may be given if a deficiency of pyruvate dehydrogenase is known or suspected. The symptoms of lactic acidosis are treated by supplementing the diet with sodium bicarbonate (baking soda) or sodium citrate, but these substances do not treat the cause of Leigh syndrome. Dichloroacetate may also be effective in treating Leigh syndrome-associated lactic acidosis; research is ongoing on this substance. Coenzyme Q10 supplements have been seen to improve symptoms in some cases.
Clinical trials of the drug EPI-743 for Leigh disease are ongoing.
In 2016, John Zhang and his team at New Hope Fertility Center in New York, USA, performed a spindle transfer mitochondrial donation technique on a mother in Mexico who was at risk of producing a baby with Leigh disease. A healthy boy was born on 6 April 2016. However, it is not yet certain if the technique is completely reliable and safe.
The main treatments for CTLN1 include a low-protein, high-calorie diet with amino acid supplements, particularly arginine. The Ucyclyd protocol, using buphenyl and ammonul, is used for treatment as well. Hyperammonemia is treated with hemodialysis; intravenous arginine, sodium benzoate, and sodium phenylacetate. In some cases, liver transplantation may be a viable treatment. L-carnitine is used in some treatment protocols.