Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment for MSS is symptomatic and supportive including physical and occupational therapy, speech therapy, and special education. Cataracts must be removed when vision is impaired, generally in the first decade of life. Hormone replacement therapy is needed if hypogonadism is present.
There is currently no specified treatment for individuals suffering from otodental syndrome. Considering that there are many possible genetic and phenotypic associations with the condition, treatment is provided based on each individual circumstance. It is recommended that those affected seek ear, nose & throat specialists, dental health specialists, and facial oral health specialists immediately; in order to determine potential treatment options.
Common treatment methods given are:
- Dental treatment/management – which can be complex, interdisciplinary and requires a regular follow up. Tooth extraction(s)and if needed, medications may be administered for pain, anxiety, and anti-inflammation. The affected individual is usually placed on a strict and preventative dental regiment in order to maintain appropriate oral hygiene and health.
- Endodontic treatment – individuals consult with an endodontist to analyze the individuals dental pulp. Typically endodontic treatment proves to be difficult due to duplicated pulp canals within the affected teeth. There may be a need for multiple extractions as well. Dental prosthesis and/or dental implants may be necessary for individuals that lack proper oral function, appearance, and comfort.
- Orthodontic treatment – given the predicament of the size and location of the affected oral area, molars and canines, orthodontic treatment is generally required in order treat any problems associated with the individuals bite pattern and tooth appearance.
- Hearing aids – in some cases affected individuals will suffer from hearing imparities and it may be necessary for hearing aid use.
The functional prognosis is mostly good with those that suffer from otodental syndrome. Appropriate dental treatment, hearing aids, and visitation to necessary specialists are recommended. Quality of life may be affected by psychological and functional aspects. It is also recommended that genetic counseling be given to families that have or may have this condition.
There is no known cure for this syndrome. Patients usually need ophthalmic surgery and may also need dental surgery
Genetic counseling and screening of the mother's relatives is recommended.
Treatment for Joubert syndrome is symptomatic and supportive. Infant stimulation and physical, occupational, speech and hearing therapy may benefit some patients. Infants with abnormal breathing patterns should be monitored.
The syndrome is associated with progressive worsening for kidneys, the liver and the eyes and thus require regular monitoring.
The treatment of individuals with TCS may involve the intervention of professionals from multiple disciplines. The primary concerns are breathing and feeding, as a consequence of the hypoplasia of the mandibula and the obstruction of the hypopharynx by the tongue. Sometimes, they may require a tracheostomy to maintain an adequate airway, and a gastrostomy to assure an adequate caloric intake while protecting the airway. Corrective surgery of the face is performed at defined ages, depending on the developmental state.
An overview of the present guidelines:
- If a cleft palate is present, the repair normally takes place at 9–12 months old. Before surgery, a polysomnography with a palatal plate in place is needed. This may predict the postoperative situation and gives insight on the chance of the presence of sleep apnea (OSAS) after the operation.
- Hearing loss is treated by bone conduction amplification, speech therapy, and educational intervention to avoid language/speech problems. The bone-anchored hearing aid is an alternative for individuals with ear anomalies
- Zygomatic and orbital reconstruction is performed when the cranio-orbitozygomatic bone is completely developed, usually at the age of 5–7 years. In children, an autologous bone graft is mostly used. In combination with this transplantation, lipofilling can be used in the periorbital area to get an optimal result of the reconstruction. Reconstruction of the lower eyelid coloboma includes the use of a myocutaneous flap, which is elevated and in this manner closes the eyelid defect.
- External ear reconstruction is usually done when the individual is at least eight years old. Sometimes, the external auditory canal or middle ear can also be treated.
- The optimal age for the maxillomandibular reconstruction is controversial; as of 2004, this classification has been used:
1. Type I (mild) and Type IIa (moderate) 13–16 years
2. Type IIb (moderate to severe malformation) at skeletal maturity
3. Type III (severe) 6–10 years
- When the teeth are cutting, the teeth should be under supervision of an orthodontist to make sure no abnormalities occur. If abnormalities like dislocation or an overgrowth of teeth are seen, appropriate action can be undertaken as soon as possible.
- Orthognatic treatments usually take place after the age of 16 years; at this point, all teeth are in place and the jaw and dentures are mature. Whenever OSAS is detected, the level of obstruction is determined through endoscopy of the upper airways. Mandibular advancement can be an effective way to improve both breathing and æsthetics, while a chinplasty only restores the profile.
- If a nose reconstruction is necessary, it is usually performed after the orthognatic surgery and after the age of 18 years.
- The contour of the facial soft tissues generally requires correction at a later age, because of the facial skeletal maturity. The use of microsurgical methods, like the free flap transfer, has improved the correction of facial soft tissue contours. Another technique to improve the facial soft tissue contours is lipofilling. For instance, lipofilling is used to reconstruct the eyelids.
Treatment of 3-M syndrome is aimed at the specific symptoms presented in each individual. With the various symptoms of this disorder being properly managed and affected individuals having normal mental development, 3-M syndrome is not a life - threatening condition and individuals are able to lead a near normal life with normal life expectancy.
Treatment may involve the coordinated efforts of many healthcare professionals, such as pediatricians, orthopedists, dentists and/or other specialists depending on the symptoms.
- Possible management options for short stature are surgical bone lengthening or growth hormone therapy.
- Orthopedic techniques and surgery may be used to treat certain skeletal abnormalities.
- Plastic surgery may also be performed on individuals to help correct certain cranio-facial anomalies.
- Individuals with dental abnormalities may undergo corrective procedures such as braces or oral surgeries.
Many of the congenital malformations found with Malpuech syndrome can be corrected surgically. These include cleft lip and palate, omphalocele, urogenital and craniofacial abnormalities, skeletal deformities such as a caudal appendage or scoliosis, and hernias of the umbillicus. The primary area of concern for these procedures applied to a neonate with congenital disorders including Malpuech syndrome regards the logistics of anesthesia. Methods like tracheal intubation for management of the airway during general anesthesia can be hampered by the even smaller, or maldeveloped mouth of the infant. For regional anesthesia, methods like spinal blocking are more difficult where scoliosis is present. In a 2010 report by Kiernan et al., a four-year-old girl with Malpuech syndrome was being prepared for an unrelated tonsillectomy and adenoidectomy. While undergoing intubation, insertion of a laryngoscope, needed to identify the airway for the placement of the endotracheal tube, was made troublesome by the presence of micrognathia attributed to the syndrome. After replacement with a laryngoscope of adjusted size, intubation proceeded normally. Successful general anesthesia followed.
A rare follow-up of a male with Malpuech syndrome was presented by Priolo et al. (2007). Born at term from an uneventful pregnancy and delivery, the infant underwent a surgical repair of a cleft lip and palate. No problems were reported with the procedure. A heart abnormality, atrial septal defect, was also apparent but required no intervention. At age three years, mental retardation, hyperactivity and obsessive compulsive disorder were diagnosed; hearing impairment was diagnosed at age six, managed with the use of hearing aids. Over the course of the decade that followed, a number of psychiatric evaluations were performed. At age 14, he exhibited a fear of physical contact; at age 15, he experienced a severe psychotic episode, characterized by agitation and a loss of sociosexual inhibition. This array of symptoms were treated pharmocologically (with prescription medications). He maintained a low level of mental deficiency by age 17, with moments of compulsive echolalia.
There are no cures for FHS. Close monitoring of growth in the first few years is essential, as well as annual general health screening and tests listed below. An FHS diagnosis will affect the individual and those there to support them.
Managing symptoms and features of FHS involves maintaining a close watch on the patient's physical as well as mental health. This would include:
- Sequencing of SRCAP exons 31–34 in all suspected cases
- Complete assessments of auditory and visual systems
- Renal and urinary tract ultrasound
- Orthopedic assessment of hip dysplasia and clavicle abnormalities
- Neurologic assessment if there is a suspicion of seizures
- Dental hygiene to prevent cavities and to monitor for malocclusion
- Evaluation for growth hormone deficiency at baseline, to be repeated if loss of growth velocity occurs
- Monitoring of bone age and pubertal timing in case of precocious puberty
- Psychoeducational assessments corrected for deficiencies in expressive language and sensory issues
- Monitoring of behavioral disturbances and provision of early intervention
- Counseling for families regarding recurrence risk and the offspring of individuals with FHS
Special education programs and vocational training to address developmental disabilities are highly recommended, as well as communication rehabilitation with sign language or alternative means of communication. Behavior management strategies could also include referrals to behavior specialists or psychologists for help. For those concerned, genetic counseling can be sought for issues related to testing of at-risk relatives.
Surgery is typically used to correct structural heart defects and syndactyly. Propanolol or beta-adrenergic blockers are often prescribed as well as insertion of a pacemaker to maintain proper heart rhythm. With the characterization of Timothy syndrome mutations indicating that they cause defects in calcium currents, it has been suggested that calcium channel blockers may be effective as a therapeutic agent.
Treatment for individuals with Dandy–Walker Syndrome generally consists of treating the associated problems, if needed.
A special tube (shunt) to reduce intracranial pressure may be placed inside the skull to control swelling. Endoscopic third ventriculostomy is also an option.
Treatment may also consist of various therapies such as occupational therapy, physiotherapy, speech therapy or specialized education. Services of a teacher of students with blindness/visual impairment may be helpful if the eyes are affected.
Medical management may involve immunosuppressive drugs such as methotrexate, corticosteroids, cyclophosphamide, and azathioprine. No randomized controlled trials have yet been conducted to evaluate such treatments, so the benefits have not been clearly established.
The key problem is the early fusion of the skull, which can be corrected by a series of surgical procedures, often within the first three months after birth. Later surgeries are necessary to correct respiratory and facial deformities.
There is no cure for Williams syndrome. Suggestions include avoidance of extra calcium and vitamin D, as well as treating high levels of blood calcium. Blood vessel narrowing can be a significant health problem, and is treated on an individual basis.
Physical therapy is helpful to patients with joint stiffness and low muscle tone. Developmental and speech therapy can also help children and increase the success of their social interactions. Other treatments are based on a patient's particular symptoms.
The American Academy of Pediatrics recommends annual cardiology evaluations for individuals with Williams syndrome. Other recommended assessments include: ophthalmologic evaluations, an examination for inguinal hernia, objective hearing assessment, blood pressure measurement, developmental and growth evaluation, orthopedic assessments on joints, muscle tone, and ongoing feeding and dietary assessments to manage constipation and urinary problems.
Behavioral treatments have been shown to be effective. In regards to social skills it may be effective to channel their nature by teaching basic skills. Some of these are the appropriate way to approach someone, how and when to socialize in settings such as school or the workplace, and warning of the signs and dangers of exploitation. For the fear that they demonstrate cognitive-behavioral approaches, such as therapy, are the recommended treatment. One of the things to be careful of with this approach is to make sure that the patients' charming nature does not mask any underlying feelings.
Perhaps the most effective treatment for those with Williams syndrome is music. Those with Williams syndrome have shown a relative strength in regards to music, albeit only in pitch and rhythm tasks. Not only do they show a strength in the field but also a particular fondness for it. It has been shown that music may help with the internal and external anxiety that these people are more likely to be afflicted with. Something of note is that the typical person processes music in the superior temporal and middle temporal gyri. Those with Williams syndrome have a reduced activation in these areas but an increase in the right amygdala and cerebellum.
People affected by Williams syndrome are supported by multiple organizations, including the Canadian Association for Williams Syndrome and the Williams Syndrome Registry.
The disorder can be associated with a number of psychological symptoms, anxiety, depression, social phobia, body image disorders, and patients may be subjected to discrimination, bullying and name calling especially when young. A multi-disciplinary team and parental support should include these issues.
Affected individuals may benefit from autologous fat transfer or fat grafts to restore a more normal contour to the face. However, greater volume defects may require microsurgical reconstructive surgery which may involve the transfer of an island parascapular fasciocutaneous flap or a free flap from the groin, rectus abdominis muscle (Transverse Rectus Abdominis Myocutaneous or "TRAM" flap) or latissimus dorsi muscle to the face. Severe deformities may require additional procedures, such as pedicled temporal fascia flaps, cartilage grafts, bone grafts, orthognathic surgery, and bone distraction. The timing of surgical intervention is controversial; some surgeons prefer to wait until the disease has run its course while others recommend early intervention.
There is no cure for McLeod syndrome; the treatment is supportive depending on symptoms. Medication may assist with management of epilepsy, and cardiac and psychiatric features, although patients may respond poorly to treatment for chorea.
Currently there are no open research studies for otodental syndrome. Due to the rarity of this disease, current research is very limited.
The most recent research has involved case studies of the affected individuals and/or families, all of which show the specific phenotypic symptoms of otodental syndrome. Investigations on the effects of FGF3 and FADD have also been performed. These studies have shown successes in supporting previous studies that mutations to FGF3 and neighboring genes may cause the associated phenotypic abnormalities. According to recent studies involving zebrafish embryos, there is also support in that the FADD gene contributed to ocular coloboma symptoms as well.
Future research studies are required in order to better grasp the specific relationship between the gene involved and its effect on various tissues and organs such as teeth, eyes, and ear. Little is known and there is still much to be determined.
There does not yet exist a specific treatment for IP. Treatment can only address the individual symptoms.
There is no cure for this condition. Treatment is supportive and varies depending on how symptoms present and their severity. Some degree of developmental delay is expected in almost all cases of M-CM, so evaluation for early intervention or special education programs is appropriate. Rare cases have been reported with no discernible delay in academic or school abilities.
Physical therapy and orthopedic bracing can help young children with gross motor development. Occupational therapy or speech therapy may also assist with developmental delays. Attention from an orthopedic surgeon may be required for leg length discrepancy due to hemihyperplasia.
Children with hemihyperplasia are thought to have an elevated risk for certain types of cancers. Recently published management guidelines recommend regular abdominal ultrasounds up to age eight to detect Wilms' tumor. AFP testing to detect liver cancer is not recommended as there have been no reported cases of hepatoblastoma in M-CM patients.
Congenital abnormalities in the brain and progressive brain overgrowth can result in a variety of neurological problems that may require intervention. These include hydrocephalus, cerebellar tonsillar herniation (Chiari I), seizures and syringomyelia. These complications are not usually congenital, they develop over time often presenting complications in late infancy or early childhood, though they can become problems even later. Baseline brain and spinal cord MRI imaging with repeat scans at regular intervals is often prescribed to monitor the changes that result from progressive brain overgrowth.
Assessment of cardiac health with echocardiogram and EKG may be prescribed and arrhythmias or abnormalities may require surgical treatment.
The outcome of this disease is dependent on the severity of the cardiac defects. Approximately 1 in 3 children with this diagnosis require shunting for the hydrocephaly that is often a consequence. Some children require extra assistance or therapy for delayed psychomotor and speech development, including hypotonia.
Treatment is not needed in the asymptomatic patient. Symptomatic patients may benefit from surgical debulking of the tumor. Complete tumor removal is not usually needed and can be difficult due to the tumor location.
Recent research has been directed towards finding better treatment options. Multi-drug therapy using insulin sensitizers, such as metformin and pioglitazone, has been linked to improving residual insulin action. High doses of insulin-like growth factor 1 has also been effective in patients with Rabson–Mendenhall syndrome. Future studies are also focusing on the relation between genotype and phenotype. Though there is no cure, researchers remain optimistic on finding a cure.
There is no known cure for Rabson–Mendenhall syndrome. However, a series of steps can be directed towards treating the specific symptoms. For example, surgery may be performed to treat dental abnormalities. Furthermore, the goal of the treatment is also to maintain blood glucose levels as constantly as possible. Insulin is not as effective at normal doses, and even large doses show minimal effects. Frequent feeding is the most effective treatment to control blood glucose levels. Well thought out meals with complex combinations of carbohydrates are put together and assigned to the patient in hope of seeing a constant glucose level maintained. Though effective, these treatments tend to show more of an impact initially, and can become ineffective within months.
Treatment of Rabson–Mendenhall syndrome with pharmacologic doses of human leptin may result in improvement of fasting hyperglycemia, hyperinsulinemia, basal glucose, and glucose and insulin tolerance.
Quality of life is impacted severely and the prognosis of patients with Rabson–Mendenhall syndrome remains poor. This is due to the lack of a long term treatment. Life expectancy is 1–2 years.
Most patients with hyper IgE syndrome are treated with long-term antibiotic therapy to prevent staphylococcal infections. Good skin care is also important in patients with hyper IgE syndrome. High-dose intravenous gamma-globulin has also been suggested for the treatment of severe eczema in patients with HIES and atopic dermatitis.
In a sample of 19 children, a 1997 study found that 3 died before the age of 3, and 2 never learned to walk. The children had various levels of delayed development with developmental quotients from 60 to 85.