Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is currently no cure for SCA 6; however, there are supportive treatments that may be useful in managing symptoms.
In terms of a cure there is currently none available, however for the disease to manifest itself, it requires mutant gene expression. Manipulating the use of protein homoestasis regulators can be therapuetic agents, or a treatment to try and correct an altered function that makes up the pathology is one current idea put forth by Bushart, et al. There is some evidence that for SCA1 and two other polyQ disorders that the pathology can be reversed after the disease is underway. There is no effective treatments that could alter the progression of this disease, therefore care is given, like occupational and physical therapy for gait dysfunction and speech therapy.
RG2833, a histone deacetylase inhibitor developed by Repligen, was acquired by BioMarin Pharmaceutical in January 2014. The first human trials with this compound began in 2012.
Horizon Pharma's development plan of interferon gamma-1B for treatment of FA was given fast track designation by the Food and Drug Administration in 2015.
In its trials released in December 2016, however, the results showed no improvements over placebo in patients.
Nicotinamide administration on patients was associated with a sustained improvement in frataxin concentrations towards those seen in asymptomatic carriers during 8 weeks of daily dosing. The daily oral administration of 3.8 g nicotinamide resulted in a 1.5-times increase, whereas 7.5 g resulted in a doubling of frataxin protein concentration.
Physiotherapy intervention aims to improve balance and gait of OPCA patients, by stimulating neuroplastic changes in the atrophied neural structure. A challenge-oriented treatment program has previously been shown to be beneficial for individuals with ataxia from OPCA. The treatment program was composed of repetitive training with task challenges (e.g. obstacle course) and/or novel motor skills acquisition over a 12-week period under the supervision of a physiotherapist. Task challenges were progressed only when the patient showed mastery of a task.
Overground harness systems may be used to allow OPCA patients to challenge their balance without chance of falling. Furthermore, home exercise programs and/or aquatic exercises are used to allow more repetitions to facilitate balance learning. Treatment programs should be frequently monitored and adjusted based on a patient's progress. Outcome measures such as the Berg Balance Scale, Dynamic Gait Index and activities-specific balance confidence scales are useful to assess patient’s progress over time.
There is no known definitive cure for OMS. However, several drugs have proven to be effective in its treatment.
Some of medication used to treat the symptoms are:
- ACTH has shown improvements in symptoms but can result in an incomplete recovery with residual deficits.
- Corticosteroids (such as "prednisone" or "methylprednisolone") used at high dosages (500 mg - 2 g per day intravenously for a course of 3 to 5 days) can accelerate regression of symptoms. Subsequent very gradual tapering with pills generally follows. Most patients require high doses for months to years before tapering.
- Intravenous Immunoglobulins (IVIg) are often used with varying results.
- Several other immunosuppressive drugs, such as cyclophosphamide and azathioprine, may be helpful in some cases.
- Chemotherapy for neuroblastoma may be effective, although data is contradictory and unconvincing at this point in time.
- Rituximab has been used with encouraging results.
- Other medications are used to treat symptoms without influencing the nature of the disease (symptomatic treatment):
- Trazodone can be useful against irritability and sleep problems
- Additional treatment options include plasmapheresis for severe, steroid-unresponsive relapses.
The National Organization for Rare Disorders (NORD) recommends FLAIR therapy consisting of a three-agent protocol involving front-loaded high-dose ACTH, IVIg, and rituximab that was developed by the National Pediatric Myoclonus Center, and has the best-documented outcomes. Almost all patients (80-90%) show improvement with this treatment and the relapse rate appears to be about 20%.
A more detailed summary of current treatment options can be found at Treatment Options
The following medications should probably be avoided:
- Midazolam - Can cause irritability.
- Melatonin - Is known to stimulate the immune system.
- Also, see for more details
There is no known cure for MSA and management is primarily supportive.
Ongoing care from a neurologist specializing in "movement disorders" is recommended as the complex symptoms of MSA are often not familiar to less-specialized health care professionals.
One particularly serious problem, the drop in blood pressure upon standing up (with risk of fainting and thus injury from falling) often responds to fludrocortisone, a synthetic mineralocorticoid. Another common drug treatment is midodrine (an alpha-agonist). Non-drug treatments include "head-up tilt" (elevating the head of the whole bed by about 10 degrees), salt tablets or increasing salt in the diet, generous intake of fluids, and pressure (elastic) stockings. Avoidance of triggers of low blood pressure (such as hot weather, alcohol, and dehydration) are crucial.
Hospice/homecare services can be very useful as disability progresses.
Levodopa (L-Dopa), a drug used in the treatment of Parkinson's disease, improves parkinsonian symptoms in a small percentage of MSA patients. A recent trial reported that only 1.5% of MSA patients experienced a less than 50% improvement when taking levodopa, and even this was a transient effect lasting less than one year. Poor response to L-Dopa has been suggested as a possible element in the differential diagnosis of MSA from Parkinson's disease.
A November, 2008 study conducted in Europe failed to find an effect for the drug riluzole in treating MSA or PSP.
Management by rehabilitation professionals (physiatrists, physiotherapists, occupational therapists, speech therapists, and others) for problems with walking/movement, daily tasks, and speech problems is essential.
Physiotherapy can help to maintain the patient’s mobility and will help to prevent contractures. Instructing patients in gait training will help to improve their mobility and decrease their risk of falls. A physiotherapist may also prescribe mobility aids such as a cane or a walker to increase the patient’s safety. Other ways a physiotherapist can help to improve the patient’s safety are to teach them to move and transfer from sitting to standing slowly to decrease risk of falls and limit the effect of postural hypotension. Instruction in ankle pumping helps to return blood in the legs to the systemic circulation. To further control the postural hypotension, raising the head of the bed by 8 in (20.3 cm) while sleeping may be indicated as well as the use of elastic compression garments.
Speech and language therapists may assist in assessing, treating and supporting speech (dysarthria) and swallowing difficulties (dysphagia). Early intervention of swallowing difficulties is particularly useful to allow for discussion around tube feeding further in the disease progression.{doubtful - citation needed} At some point in the progression of the disease, fluid and food modification may be suggested. Speech changes mean that alternative communication may be needed, for example communication aids or word charts.
Social workers and occupational therapists can also help with coping with disability through the provision of equipment and home adaptations, services for caregivers and access to healthcare services, both for the person with MSA as well as family caregivers.
Depending on subtype, many patients find that acetazolamide therapy is useful in preventing attacks. In some cases, persistent attacks result in tendon shortening, for which surgery is required.
No known treatment for BPT currently exists. However, the condition it is self-limiting and resolves after about eighteen months.
Physical therapists can assist patients in maintaining their level of independence through therapeutic exercise programmes. One recent research report demonstrated a gain of 2 SARA points (Scale for the Assessment and Rating of Ataxia) from physical therapy. In general, physical therapy emphasises postural balance and gait training for ataxia patients. General conditioning such as range-of-motion exercises and muscle strengthening would also be included in therapeutic exercise programmes. Research showed that spinocerebellar ataxia 2 (SCA2) patients with a mild stage of the disease gained significant improvement in static balance and neurological indices after six months of a physical therapy exercise training program. Occupational therapists may assist patients with incoordination or ataxia issues through the use of adaptive devices. Such devices may include a cane, crutches, walker, or wheelchair for those with impaired gait. Other devices are available to assist with writing, feeding, and self care if hand and arm coordination are impaired. A randomised clinical trial revealed that an intensive rehabilitation program with physical and occupational therapies for patients with degenerative cerebellar diseases can significantly improve functional gains in ataxia, gait, and activities of daily living. Some level of improvement was shown to be maintained 24 weeks post-treatment. Speech language pathologists may use both behavioral intervention strategies as well as augmentative and alternative communication devices to help patients with impaired speech.
There is no cure for spinocerebellar ataxia, which is currently considered to be a progressive and irreversible disease, although not all types cause equally severe disability.
In general, treatments are directed towards alleviating symptoms, not the disease itself. Many patients with hereditary or idiopathic forms of ataxia have other symptoms in addition to ataxia. Medications or other therapies might be appropriate for some of these symptoms, which could include tremor, stiffness, depression, spasticity, and sleep disorders, among others. Both onset of initial symptoms and duration of disease are variable. If the disease is caused by a polyglutamine trinucleotide repeat CAG expansion, a longer expansion may lead to an earlier onset and a more radical progression of clinical symptoms. Typically, a person afflicted with this disease will eventually be unable to perform daily tasks (ADLs). However, rehabilitation therapists can help patients to maximize their ability of self-care and delay deterioration to certain extent. Researchers are exploring multiple avenues for a cure including RNAi and the use of Stem Cells and several other avenues.
On January 18, 2017 BioBlast Pharma announced completion of Phase 2a clinical trials of their medication, Trehalose, in the treatment of SCA3. BioBlast has received FDA Fast Track status and Orphan Drug status for their treatment. The information provided by BioBlast in their research indicates that they hope this treatment may prove efficacious in other SCA treatments that have similar pathology related to PolyA and PolyQ diseases.
In addition, Dr. Beverly Davidson has been working on a methodology using RNAi technology to find a potential cure for over 2 decades. Her research began in the mid-1990s and progressed to work with mouse models about a decade later and most recently has moved to a study with non-human primates. The results from her most recent research "are supportive of clinical application of this gene therapy". Dr. Davidson along with Dr. Pedro Gonzalez-Alegre are currently working to move this technique into a Phase 1 clinical trial.
Finally, another gene transfer technology discovered in 2011 has also been shown by Dr. Davidson to hold great promise and offers yet another avenue to a potential future cure.
Treatment is not needed in the asymptomatic patient. Symptomatic patients may benefit from surgical debulking of the tumor. Complete tumor removal is not usually needed and can be difficult due to the tumor location.
Like many mitochondrial diseases, there is no cure for MERRF, no matter the means for diagnosis of the disease. The treatment is primarily symptomatic. High doses of Coenzyme Q10, B complex vitamins and L-Carnitine are the drugs that patients are treated with in order to account for the altered metabolic processed resulting in the disease. There is very little success with these treatments as therapies in hopes of improving mitochondrial function. The treatment only alleviates symptoms and these do not prevent the disease from progressing. Patients with concomitant disease, such as diabetes, deafness or cardiac disease, are treated in combination to manage symptoms.
There is no cure for Machado-Joseph Disease. However, treatments are available for some symptoms. For example, spasticity can be reduced with antispasmodic drugs, such as baclofen. The Parkinsonian symptoms can be treated with levodopa therapy. Prism glasses can reduce diplopic symptoms. Physiotherapy/Physical Therapy and/or occupational therapy can help patients by prescribing mobility aids to increase the patients' independence, providing gait training, and prescribing exercises to maintain the mobility of various joints and general health to decrease the likelihood of falls or injuries as a result of falls. Walkers and wheelchairs can greatly help the patient with everyday tasks. Some patients will experience difficulties with speech and swallowing, therefore a Speech-Language Pathologist can assist the patients to improve their communicating abilities and their issues with swallowing.
Treatment for MSS is symptomatic and supportive including physical and occupational therapy, speech therapy, and special education. Cataracts must be removed when vision is impaired, generally in the first decade of life. Hormone replacement therapy is needed if hypogonadism is present.
Ataxia usually goes away without any treatment. In cases where an underlying cause is identified, your doctor will treat the underlying cause. In extremely rare cases, you may have continuing and disabling symptoms. Treatment includes corticosteroids, Intravenous immunoglobulin, or plasma exchange therapy. Drug treatment to improve muscle coordination has a low success rate. However, the following drugs may be prescribed: clonazepam, amantadine, gabapentin, or buspirone. Occupational or physical therapy may also alleviate lack of coordination. Changes to diet and nutritional supplements may also help. Treatment will depend on the cause. If the acute cerebellar ataxia is due to bleeding, surgery may be needed. For a stroke, medication to thin the blood can be given. Infections may need to be treated with antibiotics. Steroids may be needed for swelling (inflammation) of the cerebellum (such as from multiple sclerosis). Cerebellar ataxia caused by a recent viral infection may not need treatment.
Currently there is no curative treatment for KSS. Because it is a rare condition, there are only case reports of treatments with very little data to support their effectiveness. Several promising discoveries have been reported which may support the discovery of new treatments with further research. Satellite cells are responsible for muscle fiber regeneration. It has been noted that mutant mtDNA is rare or undetectable in satellite cells cultured from patients with KSS. Shoubridge et al. (1997) asked the question whether wildtype mtDNA could be restored to muscle tissue by encouraging muscle regeneration. In the forementioned study, regenerating muscle fibers were sampled at the original biopsy site, and it was found that they were essentially homoplasmic for wildtype mtDNA. Perhaps with future techniques of promoting muscle cell regeneration and satellite cell proliferation, functional status in KSS patients could be greatly improved.
One study described a patient with KSS who had reduced serum levels of coenzyme Q10. Administration of 60–120 mg of Coenzyme Q10 for 3 months resulted in normalization of lactate and pyruvate levels, improvement of previously diagnosed first degree AV block, and improvement of ocular movements.
A screening ECG is recommended in all patients presenting with CPEO. In KSS, implantation of pacemaker is advised following the development of significant conduction disease, even in asymptomatic patients.
Screening for endocrinologic disorders should be performed, including measuring serum glucose levels, thyroid function tests, calcium and magnesium levels, and serum electrolyte levels. Hyperaldosteronism is seen in 3% of KSS patients.
Different medications are tried in an effort to find a combination that is effective for a specific person. Not all people will respond well to the same medications. Medications that have had positive results in some include: diphenhydramine, benzatropine and atropine. anti-Parkinsons agents (such as ropinirole and bromocriptine), and muscle relaxants (such as diazepam).
- Anticholinergics
Medications such as anticholinergics (benztropine), which act as inhibitors of the neurotransmitter acetylcholine, may provide some relief. In the case of an acute dystonic reaction, diphenhydramine is sometimes used (though this drug is well known as an antihistamine, in this context it is being used primarily for its anticholinergic role).. See also Procyclidine.
- Baclofen
A baclofen pump has been used to treat patients of all ages exhibiting muscle spasticity along with dystonia. The pump delivers baclofen via a catheter to the thecal space surrounding the spinal cord. The pump itself is placed in the abdomen. It can be refilled periodically by access through the skin. Baclofen can also be taken in tablet form
- Botulin toxin injection
Botulinum toxin injections into affected muscles have proved quite successful in providing some relief for around 3–6 months, depending on the kind of dystonia. Botox or Dysport injections have the advantage of ready availability (the same form is used for cosmetic surgery) and the effects are not permanent. There is a risk of temporary paralysis of the muscles being injected or the leaking of the toxin into adjacent muscle groups, causing weakness or paralysis in them. The injections have to be repeated, as the effects wear off and around 15% of recipients will develop immunity to the toxin. There is a Type A and a Type B toxin approved for treatment of dystonia; often, those that develop resistance to Type A may be able to use Type B.
- Muscle relaxants
Clonazepam, an anti-seizure medicine, is also sometimes prescribed. However, for most, their effects are limited and side-effects like mental confusion, sedation, mood swings, and short-term memory loss occur.
- Parkinsonian drugs
Dopamine agonists: One type of dystonia, dopamine-responsive dystonia, can be completely treated with regular doses of L-DOPA in a form such as Sinemet (carbidopa/levodopa). Although this does not remove the condition, it does alleviate the symptoms most of the time. (In contrast, dopamine antagonists can sometimes cause dystonia.)
Ketogenic Diet
A Ketogenic diet consisting of 70% fats (focusing on medium chain triglycerides and unsaturated fats), 20% protein and 10% carbohydrates (any sugar) has shown strong promise as a treatment for Dystonia.
Currently treatment is only symptomatic and palliative. Treatment for manifestations, such as seizures, dystonia, sleep disorders, depression and anxiety, can be effectively managed. Physical and occupational therapy is recommended to help patients retain fine motor function for as long as possible Recent progress has been made in the application of enzyme-replacement, gene, and stem cell therapies for patients.
"For many years, it was thought that postural and balance disorders in cerebellar ataxia were not treatable. However, the results of several recent studies suggest that rehabilitation can relieve postural disorders in patients with cerebellar ataxia...There is now moderate level evidence that rehabilitation is efficient to improve postural capacities of patients with cerebellar ataxia – particularly in patients with degenerative ataxia or multiple sclerosis. Intensive rehabilitation programs with balance and coordination exercises are necessary. Although techniques such as virtual reality, biofeedback, treadmill exercises with supported bodyweight and torso weighting appear to be of value, their specific efficacy has to be further investigated. Drugs have only been studied in degenerative ataxia, and the level of evidence is low."
One approach is that it can be ameliorated to varying degrees by means of Frenkel exercises.
One main objective of the treatment is to re-establish the physiological inhibition exerted by the cerebellar cortex over cerebellar nuclei. Research using Transcranial direct-current stimulation (TCDCS) and Transcranial magnetic stimulation (TMS) shows promising results.
Additionally, mild to moderate cerebellar ataxia may be treatable with buspirone.
It is thought that the buspirone increases the serotonin levels in the cerebellum and so decreases ataxia.
Supportive treatment is the only intervention for acute cerebellar ataxia of childhood. Symptoms may last as long as 2 or 3 months.
The standard treatment is chenodeoxycholic acid (CDCA) replacement therapy. Serum cholesterol levels are also followed. If hypercholesterolemia is not controlled with CDCA, an HMG-CoA reductase inhibitor ("statins" such as simvastatin) can also be used.
There is no treatment known to slow or stop the progression of the neurologic problems. Treatment of A-T is symptomatic and supportive. Physical, occupational and speech therapies and exercise may help maintain function but will not slow the course of neurodegeneration. Therapeutic exercises should not be used to the point of fatigue and should not interfere with activities of daily life. Certain anti-Parkinson and anti-epileptic drugs maybe useful in the management of symptoms, but should be prescribed in consultation with a neurologist.
For a prognosis, treatment, and any other information, please consult your doctor.