Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Surgical excision is the standard of care. Some individuals advocate the use of hair removal laser for the treatment of congenital nevi. While this is likely safe and effective for small congenital nevus, laser removal for larger lesions might pose a liability for the laser surgeon if malignancy developed from a deep (dermal) component of the nevus that is not reached by the laser. Repigmentation after laser treatment of congenital nevi or superficial curettage supports this concern.
Many are surgically removed for aesthetics and relief of psychosocial burden, but larger ones are also excised for prevention of cancer, although the benefit is impossible to assess for any individual patient. Proliferative nodules are usually biopsied and are regularly but not systematically found to be benign. Estimates of transformation into melanoma vary from 2-42% in the literature, but are most commonly considered to be at the low end of that spectrum due to early observer bias.
Once a patient with neurocutaneous melanosis becomes symptomatic, little can be done to improve prognosis as there is no effective treatment for the disorder. Most therapies are designed to treat the symptoms associated with the disorder, mainly those related to hydrocephalus. A ventriculoperitoneal shunt to relieve intracranial pressure is the preferred method.
Chemotherapy and radiotherapy have been shown to be ineffective in cases of neurocutaneous melanosis where malignancy is present. Additionally, due to the total infiltration of the central nervous system by these lesions, surgical resection is not a viable treatment option.
It has been demonstrated that early embryonic, post-zygotic somatic mutations in the NRAS gene are implicated in the pathogenesis of NCM. Recently, experimental treatment with MEK162, a MEK inhibitor, has been tried in a patient with NCM and progressive symptomatic leptomeningeal melanocytosis. Pathological studies with immunohistochemical and Western Blot analyses using Ki67 and pERK antibodies showed a potential effect of MEK inhibiting therapy. Further studies are needed to determine whether MEK inhibitors can effectively target NRAS-mutated symptomatic NCM.
The best treatment of lentigo maligna is not clear as it has not been well studied.
Standard excision is still being done by most surgeons. Unfortunately, the recurrence rate is high (up to 50%). This is due to the ill defined visible surgical margin, and the facial location of the lesions (often forcing the surgeon to use a narrow surgical margin). The use of dermatoscopy can significantly improve the surgeon's ability to identify the surgical margin. The narrow surgical margin used (smaller than the standard of care of 5 mm), combined with the limitation of the standard bread loafing technique of fixed tissue histology - result in a high "false negative" error rate, and frequent recurrences. Margin controlled (peripheral margins) is necessary to eliminate the false negative errors. If breadloafing is utilized, distances from sections should approach 0.1 mm to assure that the method approaches complete margin control.
Where the lesion is on the face and either large or 5mm margins are possible, a skin flap or skin graft may be indicated/required. Grafts have their own risks of failure and poor cosmetic outcomes. Flaps can require extensive incision resulting in long scars and may be better done by plastic surgeons (and possibly better again by those with extensive LM or "suspicious of early malignant melanoma" experience.
Mohs surgery has been done with cure rate reported to be 77%. The "double scalpel" peripheral margin controlled excision method approximates the Mohs method in margin control, but requires a pathologist intimately familiar with the complexity of managing the vertical margin on the thin peripheral sections and staining methods.
Some melanocytic nevi, and melanoma-in-situ (lentigo maligna) have resolved with an experimental treatment, imiquimod (Aldara) topical cream, an immune enhancing agent. In view of the very poor cure rate with standard excision, some surgeons combine the two methods: surgical excision of the lesion, then three months treatment of the area with imiquimod cream.
Studies seem to conflict about the level of certainty associated with using imiquimod.
Another treatment to be considered where standard margins cannot be achieved or cosmetics are a major consideration is ultra-soft x-ray/grenz-ray radiation.
In the very elderly or those with otherwise limited life expectancy, the impact of major day surgery for excision with 5mm margins and large skin flap could be worse than doing nothing or the possibility of failed treatments with imiquimod or Grenz ray.
Mole removal risks mainly depend on the type of mole removal method the patient undergoes. First, mole removal may be followed by some discomfort that can be relieved with pain medication. Second, there is a risk that a scab will form or that redness will occur. However, such scabs and redness usually heal within one or two weeks. Third, as in other surgeries, there is also risk of infection or an anesthetic allergy or even nerve damage. Lastly, the mole removal may imply an uncomfortable scar depending on the mole size.
First, a diagnosis must be made. If the lesion is a seborrheic keratosis, then shave excision, electrodesiccation or cryosurgery may be performed, usually leaving very little if any scarring. If the lesion is suspected to be a skin cancer, a skin biopsy must be done first, before considering removal. This is unless an excisional biopsy is warranted. If the lesion is a melanocytic nevus, one has to decide if it is medically indicated or not
If a melanocytic nevus is suspected of being a melanoma, it needs to be sampled or removed and sent for microscopic evaluation by a pathologist by a method called skin biopsy. One can do a complete excisional skin biopsy or a punch skin biopsy, depending on the size and location of the original nevus. Other reasons for removal may be cosmetic, or because a raised mole interferes with daily life (e.g. shaving). Removal can be by excisional biopsy or by shaving. A shaved site leaves a red mark on the site which returns to the patient’s usual skin color in about two weeks. However, there might still be a risk of spread of the melanoma, so the methods of Melanoma diagnosis, including excisional biopsy, are still recommended even in these instances. Additionally, moles can be removed by laser, surgery or electrocautery.
In properly trained hands, some medical lasers are used to remove flat moles level with the surface of the skin, as well as some raised moles. While laser treatment is commonly offered and may require several appointments, other dermatologists think lasers are not the best method for removing moles because the laser only cauterizes or, in certain cases, removes very superficial levels of skin. Moles tend to go deeper into the skin than non-invasive lasers can penetrate. After a laser treatment a scab is formed, which falls off about seven days later, in contrast to surgery, where the wound has to be sutured. A second concern about the laser treatment is that if the lesion is a melanoma, and was misdiagnosed as a benign mole, the procedure might delay diagnosis. If the mole is incompletely removed by the laser, and the pigmented lesion regrows, it might form a recurrent nevus.
Electrocautery is available as an alternative to laser cautery. Electrocautery is a procedure that uses a light electrical current to burn moles, skin tags, and warts off the skin. Electric currents are set to a level such that they only reach the outermost layers of the skin, thus reducing the problem of scarring. Approximately 1-3 treatments may be needed to completely remove a mole. Typically, a local anesthetic is applied to the treated skin area before beginning the mole removal procedure.
For surgery, many dermatologic and plastic surgeons first use a freezing solution, usually liquid nitrogen, on a raised mole and then shave it away with a scalpel. If the surgeon opts for the shaving method, he or she usually also cauterizes the stump. Because a circle is difficult to close with stitches, the incision is usually elliptical or eye-shaped. However, freezing should not be done to a nevus suspected to be a melanoma, as the ice crystals can cause pathological changes called "freezing artifacts" which might interfere with the diagnosis of the melanoma.
The decision to observe or treat a nevus may depend on a number of factors, including cosmetic concerns, irritative symptoms (e.g., pruritus), ulceration, infection, and concern for potential malignancy.
The treatment for hemangioblastoma is surgical excision of the tumor. Although usually straightforward to carry out, recurrence of the tumor or more tumors at a different site develop in approximately 20% of patients. Gamma Knife Radiosurgery as well as LINAC have also been employed to successfully treat recurrence and control tumor growth of cerebellar hemangioblastomas.
Total resection of the tumour, followed by radiation therapy is the standard treatment modality. Medulloepithelioma of the ciliary body may necessitate enucleation of the eye. Radiation therapy alone may prolong survival. Aggressive chemotherapy with autologous bone marrow transplant is used for metastatic medulloepitheliomas.
There is no 'cure' for this condition and currently, medical treatment is limited to plastic surgery with excision of the folds by means of scalp reduction/surgical resection. Scalp subcision has also been suggested as a treatment. Additional suggestions also include injections of a dermal filler i.e. Sculptra (poly-L-lactic acid)
MASC is currently treated as a low-grade (i.e. Grade 1) carcinoma with an overall favorable prognosis. These cases are treated by complete surgical excision. However, the tumor does have the potential to recur locally and/or spread beyond surgically dissectible margins as well as metastasize to regional lymph nodes and distant tissues, particularly in tumors with histological features indicating a high cell growth rate potential. One study found lymph node metastasis in 5 of 34 MASC patients at initial surgery for the disease; these cases, when evidencing no further spread of disease, may be treated with radiation therapy. The treatment of cases with disease spreading beyond regional lymph nodes has been variable, ranging from simple excision to radical resections accompanied by adjuvant radiotherapy and/or chemotherapy, depending on the location of disease. Mean disease-free survival for MASC patients has been reported to be 92 months in one study.
The tyrosine kinase activity of NTRK3 as well as the ETV6-NTRK3 protein is inhibited by certain tyrosine kinase inhibitory drugs such as Entrectinib and LOXO-101; this offers a potential medical intervention method using these drugs to treat aggressive MASC disease. Indeed, one patient with extensive head and neck MASC disease obtained an 89% fall in tumor size when treated with entrectinib. This suppression lasted only 7 months due to the tumor's acquirement of a mutation in the "ETV6-NTRK3" gene. The newly mutated gene encoded an entrectinib-reisistant "ETV6-NTRK3" protein. Treatment of aggressive forms of MASC with NTRK3-inhibiting tyrosine kinase inhibiting drugs, perhaps with switching to another type of tyrosine kinase inhibitor drug if the tumor acquires resistance to the initial drug, is under study.STARTRK-2
Wide excision is the treatment of choice, although attempting to preserve hearing. Based on the anatomic site, it is difficult to completely remove, and so while there is a good prognosis, recurrences or persistence may be seen. There is no metastatic potential. Patients who succumb to the disease, usually do so because of other tumors within the von Hippel-Lindau complex rather than from this tumor.
The management of a nevus depends on the specific diagnosis, however, the options for treatment generally include the following modalities:
The main treatment modalities are surgery, embolization and radiotherapy.
Treatment depends on the thickness of the invasive component of the lentigo maligna. Treatment is essentially identical to other melanomas of the same thickness and stage.
Large and especially giant congenital nevi are at higher risk for malignancy degeneration into melanoma. Because of the premalignant potential, it is an acceptable clinical practice to remove congenital nevi electively in all patients and relieve the nevocytic overload.
The majority of patients with neurocutaneous melanosis are asymptomatic and therefore have a good prognosis with few complications. Most are not diagnosed, so definitive data in not available. For symptomatic patients, the prognosis is far worse. In patients without the presence of melanoma, more than 50% die within 3 years of displaying symptoms. While those with malignancy have a mortality rate of 77% with most patients displaying symptoms before the age of 2.
The presence of a Dandy-Walker malformation along with neurocutaneous melanosis, as occurs in 10% of symptomatic patients, further deteriorates prognosis. The median survival time for these patients is 6.5 months after becoming symptomatic.
Treatment options include surgery, radiotherapy, radiosurgery, and chemotherapy.
The infiltrating growth of microscopic tentacles in fibrillary astrocytomas makes complete surgical removal difficult or impossible without injuring brain tissue needed for normal neurological function. However, surgery can still reduce or control tumor size. Possible side effects of surgical intervention include brain swelling, which can be treated with steroids, and epileptic seizures. Complete surgical excision of low grade tumors is associated with a good prognosis. However, the tumor may recur if the resection is incomplete, in which case further surgery or the use of other therapies may be required.
Standard radiotherapy for fibrillary astrocytoma requires from ten to thirty sessions, depending on the sub-type of the tumor, and may sometimes be performed after surgical resection to improve outcomes and survival rates. Side effects include the possibility of local inflammation, leading to headaches, which can be treated with oral medication. Radiosurgery uses computer modelling to focus minimal radiation doses at the exact location of the tumor, while minimizing the dose to the surrounding healthy brain tissue. Radiosurgery may be a complementary treatment after regular surgery, or it may represent the primary treatment technique.
Although chemotherapy for fibrillary astrocytoma improve overall survival, it is effective only in about 20% of cases. Researchers are currently investigating a number of promising new treatment techniques including gene therapy, immunotherapy, and novel chemotherapies.
The most common form of treatment is having the tumor surgically removed however total resection is often not possible. The location could prohibit access to the neoplasm and lead to incomplete or no resection at all. Removal of the tumor will generally allow functional survival for many years. In particular for pilocytic astrocytomas (that are commonly indolent bodies that may permit normal neurologic function) surgeons may decide to monitor the neoplasm's evolution and postpone surgical intervention for some time. However, left unattended these tumors may eventually undergo neoplastic transformation.
If surgery is not possible, recommendations such as chemotherapy or radiation be suggested however side effects from these treatments can be extensive and long term.
Children with cerebellar pilocytic astrocytoma may experience side effects related to the tumor itself depending on the location and related to the treatment. Strabismus.
- Symptoms related to increased pressure in the brain often disappear after surgical removal of the tumor.
- Effects on coordination and balance improved and might progressively (to completely) disappear as recovery progresses.
- Steroid-treatment is often used to control tissue swelling that may occur pre- and post-operatively.
- Children Diagnosed can also suffer long term side effects due to the type of treatment they may receive.
In 2015 the first consensus guidelines for the diagnosis and treatment of chordoma were published in the Lancet Oncology.
In one study, the 10-year tumor free survival rate for sacral chordoma was 46%. Chondroid chordomas appear to have a more indolent clinical course.
In most cases, complete surgical resection followed by radiation therapy offers the best chance of long-term control. Incomplete resection of the primary tumor makes controlling the disease more difficult and increases the odds of recurrence. The decision whether complete or incomplete surgery should be performed primarily depends on the anatomical location of the tumor and its proximity to vital parts of the central nervous system.
Chordomas are relatively radioresistant, requiring high doses of radiation to be controlled. The proximity of chordomas to vital neurological structures such as the brain stem and nerves limits the dose of radiation that can safely be delivered. Therefore, highly focused radiation such as proton therapy and carbon ion therapy are more effective than conventional x-ray radiation.
There are no drugs currently approved to treat chordoma, however a clinical trial conducted in Italy using the PDGFR inhibitor Imatinib demonstrated a modest response in some chordoma patients. The same group in Italy found that the combination of imatinib and sirolimus caused a response in several patients whose tumors progressed on imatinib alone.
Autologous stem-cell transplants are shown to be an effective treatment. However, this should be only considered for certain people due to toxicity concerns. It is possible that the transplant may cause problems like septic shock.
Medulloepithelioma carries a dismal prognosis with a median survival of 5 months.
Treatment also involves central nervous system penetrating chemotherapy. Options include intrathecal, intraventricular, and systemic chemotherapy. These must penetrate the blood-brain barrier in order to be effective. Sometimes mixing multiple forms of treatment with chemotherapy seems to be the best route. For example, some significant improvement has been shown as a result of cranial radiation treatment preceding a brief course of intrathecal chemotherapy. Although this is an effective treatment to do, penetrating the blood-brain barrier can cause side effects due to the toxicity in the nervous system. These would include dizziness, confusion, and changes in mental status. Another form could be the use of pharmaceuticals, which have all shown positive results for treatment but should always be consulted with a physician to asses risks.
The outcome for hemangioblastoma is very good, if surgical extraction of the tumor can be achieved; excision is possible in most cases and permanent neurologic deficit is uncommon and can be avoided altogether if the tumor is diagnosed and treated early. Persons with VHL syndrome have a bleaker prognosis than those who have sporadic tumors since those with VHL syndrome usually have more than one lesion.
Screening for melanoma in FAMMM kindreds should begin at age 10 with a baseline total body skin examination including scalp, eyes, oral mucosa, genital area, and nail, as family members may develop melanoma in their early teens.
At Mayo Clinic, FAMMM patients with a confirmed mutation and family history of pancreatic cancer are offered screening with either high-resolution pancreatic protocol CT, MRI, or endoscopic ultrasound starting at age 50 or 10 years younger than the earliest family member with pancreas cancer. They are counseled on the lack of evidence-based data to support screening, and on the limitations of our current technology to detect a lesion at a stage amenable to therapy.