Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Surgical intervention is usually given to those individuals who have increased instability of their cervical spine, which cannot be resolved by conservative management alone. Further indications for surgery include a neurological decline in spinal cord function in stable patients as well as those who require cervical spinal decompression.
In many cases, individuals with CCS can experience a reduction in their neurological symptoms with conservative management. The first steps of these intervention strategies include admission to an intensive care unit (ICU) after initial injury. After entering the ICU, early immobilization of the cervical spine with a neck collar would be placed on the patient to limit the potential of further injury. Cervical spine restriction is maintained for approximately six weeks until the individual experiences a reduction in pain and neurological symptoms. Inpatient rehabilitation is initiated in the hospital setting, followed by outpatient physical therapy and occupational therapy to assist with recovery.
An individual with a spinal cord injury may have many goals for outpatient occupational and physiotherapy. Their level of independence, self-care, and mobility are dependent on their degree of neurological impairment. Rehabilitation organization and outcomes are also based on these impairments. The physiatrist, along with the rehabilitation team, work with the patient to develop specific, measurable, action-oriented, realistic, and time-centered goals.
With respect to physical therapy interventions, it has been determined that repetitive task-specific sensory input can improve motor output in patients with central cord syndrome. These activities enable the spinal cord to incorporate both supraspinal and afferent sensory information to help recover motor output. This occurrence is known as "activity dependent plasticity". Activity dependant plasticity is stimulated through such activities as: locomotor training, muscle strengthening, voluntary cycling, and functional electrical stimulation (FES) cycling
Initial care in the hospital, as in the prehospital setting, aims to ensure adequate airway, breathing, cardiovascular function, and spinal immobilization. Imaging of the spine to ascertain presence of SCI may need to wait if emergency surgery is needed to stabilize a life-threatening injury. Acute SCI merits treatment in an intensive care unit, especially injuries to the cervival spinal cord. Patients with SCI need repeated neurological assessments and treatment by neurosurgeons.
If the systolic blood pressure falls below 90 mmHg within days of the injury, blood supply to the spinal cord may be reduced, resulting in further damage. Thus it is important to maintain the blood pressure using a central venous catheter, intravenous fluids, and vasopressors, and to treat cases of shock. Mean arterial blood pressure is measured and kept at 85 to 90 mmHg for seven days after injury. The treatment for shock from blood loss (hypovolemic shock) is different from that for neurogenic shock, and could harm people with the latter type, so it is necessary to determine why someone is in shock. However it is also possible for both causes to exist at the same time. Another important aspect of care is prevention of hypoxia (insufficient oxygen in the bloodstream), which could deprive the spinal cord of much-needed oxygen. People with cervical injuries may experience a dangerously slowed heart rate; treatment to speed it up include atropine and electrical cardiac pacing.
Swelling can cause further damage to the spinal cord by reducing the blood supply and causing ischemia, which can give rise to an ischemic cascade with a release of toxins that damages neurons. Thus treatment is often geared toward limiting this secondary injury. People are sometimes treated with drugs to reduce swelling. The corticosteroid drug methylprednisolone is commonly used within eight hours of the injury, but its use is controversial because of side effects. Studies have shown high dose methylprednisolone may improve outcomes if given within 6 hours of injury. However, the improvement shown by clinical trials has been inconclusive, and comes at the cost of increased risk of serious infection or sepsis, gastrointestinal bleeding, and pneumonia. Thus organizations that set clinical guidelines have increasingly stopped recommending methylprednisolone in the treatment of acute SCI.
Surgery may be necessary, e.g. to relieve excess pressure on the cord, to stabilize the spine, or to put vertebrae back in their proper place. In cases involving instability or compression, failing to operate can lead to worsening of the condition. Surgery is also necessary when something is pressing on the cord, such as bone fragments, blood, material from ligaments or intervertebral discs, or a lodged object from a penetrating injury. Although the ideal timing of surgery is still debated, studies have found that earlier surgical intervention (within 24 hours of injury) is associated with better outcomes. Sometimes a patient has too many other injuries to be a surgical candidate this early. Surgery is controversial because it has potential complications (such as infection), so in cases where it is not clearly needed (e.g. the cord is being compressed), doctors must decide whether to perform surgery based on aspects of the patient's condition and their own beliefs about its risks and benefits.
In cases where a more conservative approach is chosen, bed rest, cervical collars, immobilizing devices, and optionally traction are used. Surgeons may opt to put traction on the spine to remove pressure from the spinal cord by putting dislocated vertebrae back into alignment, but herniation of intervertebral disks may prevent this technique from relieving pressure. "Gardner-Wells tongs" are one tool used to exert spinal traction to reduce a fracture or dislocation and to immobilize the affected areas.
There is no known treatment to reverse nerve damage due to myelomalacia. In some cases, surgery may slow or stop further damage. As motor function degenerates, muscle spasticity and atrophy may occur. Steroids may be prescribed to reduce swelling of the spinal cord, pain, and spasticity.
Research is underway to consider the potential of stem cells for treatment of neurodegenerative diseases. There are, however, no approved stem cell therapies for myelomalacia.
Arachnoiditis is difficult to treat and treatment is generally limited to alleviation of pain and other symptoms. While arachnoiditis may not yet be curable and can be significantly life-altering, management of the condition, including with medication, physical therapy, and if appropriate, psychotherapy, can help patients cope with the difficulties it presents. Surgical intervention generally has a poor outcome and may only provide temporary relief, but some cases of surgical success have been reported. Epidural steroid injections to treat sciatic pain have been linked as a "cause" of the disease by the U.S. Food and Drug Administration as well as in other research, and are therefore discouraged as a treatment for Arachnoiditis as they will most likely worsen the condition. Some patients benefit from motorized assistance devices such as the Segway or standing wheelchairs, although these types of devices may be beyond the reach of those with limited means. Standing endurance and vibration tolerance are considered before considering such devices in any case.
Dexamethasone (a potent glucocorticoid) in doses of 16 mg/day may reduce edema around the lesion and protect the cord from injury. It may be given orally or intravenously for this indication.
Surgery is indicated in localised compression as long as there is some hope of regaining function. It is also occasionally indicated in patients with little hope of regaining function but with uncontrolled pain. Postoperative radiation is delivered within 2–3 weeks of surgical decompression. Emergency radiation therapy (usually 20 Gray in 5 fractions, 30 Gray in 10 fractions or 8 Gray in 1 fraction) is the mainstay of treatment for malignant spinal cord compression. It is very effective as pain control and local disease control. Some tumours are highly sensitive to chemotherapy (e.g. lymphomas, small-cell lung cancer) and may be treated with chemotherapy alone.
Once complete paralysis has been present for more than about 24 hours before treatment, the chances of useful recovery are greatly diminished, although slow recovery, sometimes months after radiotherapy, is well recognised.
The median survival of patients with metastatic spinal cord compression is about 12 weeks, reflecting the generally advanced nature of the underlying malignant disease.
SCI patients often require extended treatment in specialized spinal unit or an intensive care unit. The rehabilitation process typically begins in the acute care setting. Usually the inpatient phase lasts 8–12 weeks and then the outpatient rehabilitation phase lasts 3–12 months after that, followed by yearly medical and functional evaluation. Physical therapists, occupational therapists, recreational therapists, nurses, social workers, psychologists and other health care professionals work as a team under the coordination of a physiatrist to decide on goals with the patient and develop a plan of discharge that is appropriate for the person’s condition.
In the acute phase physical therapists focus on the patient’s respiratory status, prevention of indirect complications (such as pressure ulcers), maintaining range of motion, and keeping available musculature active.
For people whose injuries are high enough to interfere with breathing, there is great emphasis on airway clearance during this stage of recovery. Weakness of respiratory muscles impairs the ability to cough effectively, allowing secretions to accumulate within the lungs. As SCI patients suffer from reduced total lung capacity and tidal volume, physical therapists teach them accessory breathing techniques (e.g. apical breathing, glossopharyngeal breathing) that typically are not taught to healthy individuals. Physical therapy treatment for airway clearance may include manual percussions and vibrations, postural drainage, respiratory muscle training, and assisted cough techniques. Patients are taught to increase their intra-abdominal pressure by leaning forward to induce cough and clear mild secretions. The quad cough technique is done lying on the back with the therapist applying pressure on the abdomen in the rhythm of the cough to maximize expiratory flow and mobilize secretions. Manual abdominal compression is another technique used to increase expiratory flow which later improves coughing. Other techniques used to manage respiratory dysfunction include respiratory muscle pacing, use of a constricting abdominal binder, ventilator-assisted speech, and mechanical ventilation.
The amount of functional recovery and independence achieved in terms of activities of daily living, recreational activities, and employment is affected by the level and severity of injury. The Functional Independence Measure (FIM) is an assessment tool that aims to evaluate the function of patients throughout the rehabilitation process following a spinal cord injury or other serious illness or injury. It can track a patient's progress and degree of independence during rehabilitation. People with SCI may need to use specialized devices and to make modifications to their environment in order to handle activities of daily living and to function independently. Weak joints can be stabilized with devices such as ankle-foot orthoses (AFOs) and knee-AFOs, but walking may still require a lot of effort. Increasing activity will increase chances of recovery.
The evidence for the use of medical interventions for lumbar spinal stenosis is poor. Injectable but not nasal calcitonin may be useful for short term pain relief. Epidural blocks may also transiently decrease pain, but there is no evidence of long-term effect. Adding steroids to these injections does not improve the result; the use of epidural steroid injections (ESIs) is controversial and evidence of their efficacy is contradictory.
Non-steroidal anti-inflammatory drugs (NSAIDs), muscle relaxants and opioid analgesics are often used to treat low back pain, but evidence of their efficacy is lacking.
Surgery is not always recommended for syringomyelia patients. For many patients, the main treatment is analgesia. Physicians specializing in pain management can develop a medication and treatment plan to ameliorate pain. Medications to combat any neuropathic pain symptoms such as shooting and stabbing pains (e.g. gabapentin or pregabalin) would be first-line choices. Opiates are usually prescribed for pain for management of this condition. Facet injections are not indicated for treatment of syringomyelia.
Drugs have no curative value as a treatment for syringomyelia. Radiation is used rarely and is of little benefit except in the presence of a tumor. In these cases, it can halt the extension of a cavity and may help to alleviate pain.
In the absence of symptoms, syringomyelia is usually not treated. In addition, a physician may recommend not treating the condition in patients of advanced age or in cases where there is no progression of symptoms. Whether treated or not, many patients will be told to avoid activities that involve straining.
Since the natural history of syringomyelia is poorly understood, a conservative approach may be recommended. When surgery is not yet advised, patients should be carefully monitored. Periodic MRI's and physical evaluations should be scheduled at the recommendation of a qualified physician.
Treatment is directed at the pathology causing the paralysis. If it is because of trauma such as a gunshot or knife wound, there may be other life-threatening conditions such as bleeding or major organ damage which should be dealt with on an emergent basis. If the syndrome is caused by a spinal fracture, this should be identified and treated appropriately. Although steroids may be used to decrease cord swelling and inflammation, the usual therapy for spinal cord injury is expectant.
Nonoperative therapies and laminectomy are the standard treatment for LSS. A trial of conservative treatment is typically recommended. Individuals are generally advised to avoid stressing the lower back, particularly with the spine extended. A physical therapy program to provide core strengthening and aerobic conditioning may be recommended. Overall scientific evidence is inconclusive on whether conservative approach or a surgical treatment is better for lumbar spinal stenosis.
The first step after diagnosis is finding a neurosurgeon who is experienced in the treatment of syringomyelia. Surgery is the treatment for syringomyelia. Evaluation of the condition is necessary because syringomyelia can remain stationary for long periods of time, and in some cases progress rapidly.
Surgery of the spinal cord has certain characteristic risks associated with it, and the benefits of a surgical procedure on the spine have to be weighed against the possible complications associated with any procedure. Surgical treatment is aimed at correcting the condition that allowed the syrinx to form. It is vital to bear in mind that the drainage of a syrinx does not necessarily mean the elimination of the syrinx-related symptoms but rather is aimed at stopping progression. In cases involving an Arnold-Chiari malformation, the main goal of surgery is to provide more space for the cerebellum at the base of the skull and upper cervical spine without entering the brain or spinal cord. This often results in flattening or disappearance of the primary syrinx or cavity, over time, as the normal flow of cerebrospinal fluid is restored. If a tumor is causing syringomyelia, removal of the tumor is the treatment of choice, if this is considered to be safe.
Surgery results in stabilization or modest improvement in symptoms for most patients. Delay in treatment may result in irreversible spinal cord injury. Recurrence of syringomyelia after surgery may make additional operations necessary; these may not be completely successful over the long term.
In some patients it may also be necessary to drain the syrinx, which can be accomplished using a catheter, drainage tubes, and valves. This system is also known as a shunt. Shunts are used in both the communicating and noncommunicating forms of the disorder. First, the surgeon must locate the syrinx. Then, the shunt is placed into it with the other end draining cerebrospinal fluid (CSF) into a cavity, usually the abdomen. This type of shunt is called a ventriculoperitoneal shunt and is particularly useful in cases involving hydrocephalus. By draining syrinx fluid, a shunt can arrest the progression of symptoms and relieve pain, headache, and tightness. Syringomyelia shunts are not always successful and can become blocked as with other central nervous system shunts.
The decision to use a shunt requires extensive discussion between doctor and patient, as this procedure carries with it greater risk of injury to the spinal cord, infection, blockage, or hemorrhage and may not necessarily work for all patients. Draining the syrinx more quickly does not produce better outcomes, but a shunt may be required if the fluid in the syrinx is otherwise unable to drain.
In the case of trauma-related syringomyelia, the surgeon operates at the level of the initial injury. The syrinx collapses at surgery, but a tube or shunt is usually necessary to prevent re-expansion.
If there aren't neurological symptoms (such as difficulties moving, loss of sensation, confusion, etc.) and there is no evidence of pressure on the spinal cord, a conservative approach may be taken such as:
- Drugs, such as aspirin, without steroids to relieve inflammation
- Cervical traction, in which the neck is pulled along its length, thus relieving pressure on the spinal cord
- Using a neck collar or cervical-thoracic suit
If there is pressure on the spinal cord or life-threatening symptoms are present, surgery is recommended.
Many chemical medications have been used for a broad range of neuropathic pain including Dejerine–Roussy syndrome. Symptoms are generally not treatable with ordinary analgesics. Traditional chemicals include opiates and anti-depressants. Newer pharmaceuticals include anti-convulsants and Kampo medicine. Pain treatments are most commonly administered via oral medication or periodic injections. Topical In addition, physical therapy has traditionally been used alongside a medication regimen. More recently, electrical stimulation of the brain and spinal cord and caloric stimulation have been explored as treatments.
The most common treatment plans involve a schedule of physical therapy with a medication regimen. Because the pain is mostly unchanging after development, many patients test different medications and eventually choose the regimen that best adapts to their lifestyle, the most common of which are orally and intravenously administered.
The treatment and prognosis of myelopathy depends on the underlying cause: myelopathy caused by infection requires medical treatment with pathogen specific antibiotics. Similarly, specific treatments exist for multiple sclerosis, which may also present with myelopathy. As outlined above, the most common form of myelopathy is secondary to degeneration of the cervical spine. Newer findings have challenged the existing controversy with respect to surgery for cervical spondylotic myelopathy by demonstrating that patients benefit from surgery.
Proper treatment of autonomic dysreflexia involves administration of anti-hypertensives along with immediate determination and removal of the triggering stimuli. Often, sitting the patient up and dangling legs over the bedside can reduce blood pressures below dangerous levels and provide partial symptom relief. Tight clothing and stockings should be removed. Straight catheterization of the bladder every 4 to 6 hrs, or relief of a blocked urinary catheter tube may resolve the problem. The rectum should be cleared of stool impaction, using anaesthetic lubricating jelly. If the noxious precipitating trigger cannot be identified, drug treatment is needed to decrease elevating intracranial pressure until further studies can identify the cause.
Drug treatment includes the rapidly acting vasodilators, including sublingual nitrates or oral clonidine. Ganglionic blockers are also used to control sympathetic nervous system outflow. Topical nitropaste is a convenient and safe treatment—an inch or two can be applied to the chest wall, and wiped off when blood pressures begin to normalize. Autonomic dysreflexia is abolished temporarily by spinal or general anaesthesia. These treatments are used during obstetric delivery of a woman with autonomic dysreflexia.
Expensive and invasive, the above treatments are not guaranteed to work, and are not meeting the needs of patients. There is a need for a new, less expensive, less invasive form of treatment, two of which are postulated below.
- Spinal cord stimulation has been studied in the last couple of years. In a long case study, 8 patients were given spinal cord stimulation via insertion of a percutaneous lead at the appropriate level of the cervical or thoracic spine. Between 36 and 149 months after the stimulations, the patients were interviewed. 6 of the 8 had received initial pain relief, and three experienced long-term pain relief. Spinal cord stimulation is cheaper than brain stimulation and less invasive, and is thus a more promising option for pain treatment.
- In 2007, Dr. V. S. Ramachandran and his lab proposed that caloric stimulation might be effective in treating Dejerine–Roussy syndrome. They hypothesized that if cold water was streamed into the ear down the auditory canal, the symptoms associated with Dejerine–Roussy syndrome would be alleviated. Ramachandran stated that he had carried out provisional experiments on two patients and believed that their reactions supported his theory.
Surgery
Surgical intervention is warranted in patients who present with new onset neurological signs and symptoms or have a history of progressive neurological manifestations which can be related to this abnormality. The surgical procedure required for the effective treatment of diastematomyelia includes decompression (surgery) of neural elements and removal of bony spur. This may be accomplished with or without resection and repair of the duplicated dural sacs. Resection and repair of the duplicated dural sacs is preferred since the dural abnormality may partly contribute to the "tethering" process responsible for the symptoms of this condition.
Post-myelographic CT scanning provides individualized detailed maps that enable surgical treatment of cervical diastematomyelia, first performed in 1983.
Observation
Asymptomatic patients do not require surgical treatment. These patients should have regular neurological examinations since it is known that the condition can deteriorate. If any progression is identified, then a resection should be performed.
There is a wide range of treatments for central nervous system diseases. These can range from surgery to neural rehabilitation or prescribed medications.
The procedure of spine shortening via vertebral osteotomy (SSVO) for TCS is a surgical technique that avoids the complication with revision tethering. In this research a lateral retropleural approach was used for SSVO in recurrent TCS in a 21-year-old female. The patient presented with progressive lower extremity weakness, bowel and bladder incontinence, and back pain in the setting of childhood repair of mylomeningocele and two previous detethering procedures. The research on performing SSVO in this patient allowed the scientists to conclude that SSVO via lateral retropleural approach is a good treatment for the recurrence of TCS. This procedure is minimally invasive compared to the posterior approach which gives the advantages of having direct access to the vertebral body and disc while avoiding the need to have an operation near the spinal cord but further research is still needed.
Because neurological deficits are generally irreversible, early surgery is recommended when symptoms begin to worsen. In children, early surgery is recommended to prevent further neurological deterioration, including but not limited to chronic urinary incontinence.
In adults, surgery to detether (free) the spinal cord can reduce the size and further development of cysts in the cord and may restore some function or alleviate other symptoms. Although detethering is the common surgical approach to TCS, another surgical option for adults is a spine-shortening vertebral osteotomy. A vertebral osteotomy aims to indirectly relieve the excess tension on the spinal cord by removing a portion of the spine, shortening it. This procedure offers a unique benefit in that the spinal cord remains fixated to the spine, preventing retethering and spinal cord injury as possible surgical complications. However, its complexity and limited “track record” presently keeps vertebral osteotomies reserved as an option for patients who have failed in preventing retethering after detethering procedure(s).
Other treatment is symptomatic and supportive. Medications such as NSAIDs, opiates, synthetic opiates, COX-2 inhibitors, and off-label applications of tricyclic antidepressants combined with anti-seizure compounds have yet to prove they are of value in treatment of this affliction's pain manifestations. There is anecdotal evidence that TENS units may benefit some patients.
Treatment may be needed in adults who, while previously asymptomatic, begin to experience pain, lower back degeneration, scoliosis, neck and upper back problems and bladder control issues. Surgery on adults with minimal symptoms is somewhat controversial. For example, a website from the Columbia University Department of Neurosurgery says, "For the child that has reached adult height with minimal if any symptoms, some neurosurgeons would advocate careful observation only." However, surgery for those who have worsening symptoms is less controversial. If the only abnormality is a thickened, shortened filum, then a limited lumbosacral laminectomy with division of the filum may be sufficient to relieve the symptoms.
This syndrome was first noticed in the late 19th century. While information has been available for years, little widespread blind research has been done. More research has been called for, and doctors have conducted many studies with good results. There is a low morbidity rate, and no complications have been documented other than those typical of any type of back surgery. The association of this condition with others has been noticed, and needs further research to understand such relationships. TCS is causally linked to Chiari malformation and any affirmative diagnosis of TCS must be followed by screening for Chiari's several degrees. TCS may also be related to Ehlers-Danlos syndrome, or Klippel-Feil syndrome, which should also be screened for upon a positive TCS diagnosis. Spinal compression and the resulting relief is a known issue with this disorder. Like with the early-onset form, this disease form is linked to the Arnold-Chiari malformation, in which the brain is pulled or lowers into the top of the spine.
Brown-Séquard syndrome is rare as the trauma would have to be something that damaged the nerve fibres on just one half of the spinal cord.
Arachnoiditis is a chronic disorder with no known cure, and prognosis may be hard to determine because of an unclear correlation between the beginning of the disease and the appearance of symptoms. For many, arachnoiditis is a disabling disease that causes chronic pain and neurological deficits, and may also lead to other spinal cord conditions, such as syringomyelia.
Systemic (intravenous or oral) chemotherapy and intrathecal chemotherapy: Intrathecal therapy is when injection is done directly to the spinal cord into the sub-arachnoid space to avoid the Blood-Brain-Barrier (BBB) and gain direct access to the CSF. Intrathecal Therapy is preferred since intravenous chemotherapy do not penetrate the BBB. The most common chemicals used are liposomal cytarabine (DepoCyte) and intrathecal methotrexate (MTX).
In combination, intrathecal chemotherapy most often comprises methotrexate, cytarabine, thiotepa and steroids. Ventriculoperitoneal shunts may also be applied with chemotherapy to avoid invasive surgery to gain access to the CSF.
An example of treatment:
Intrathecal MTX injection at a dose of 15 mg/day for 5 days every other week with hydrocortisone acetate injecting IT on day one to prevent arachnoiditis, the inflammation of the arachnoid. MTX administration is continued until neurological progression or relapse occurred. Systemic chemotherapy, radiotherapy, and surgery are performed depending on the need of the patient.
Risks of treatments:
Both Chemotherapy and Radiotherapy are harmful to the body and most definitely the brain. Caution must be utilized in treating patients with NM. Another factor that makes treatment difficult is that there is no suitable method to evaluate the disease progression.
While there is no current cure, the treatments for Chiari malformation are surgery and management of symptoms, based on the occurrence of clinical symptoms rather than the radiological findings. The presence of a syrinx is known to give specific signs and symptoms that vary from dysesthetic sensations to algothermal dissociation to spasticity and paresis. These are important indications that decompressive surgery is needed for patients with Chiari Malformation Type II. Type II patients have severe brain stem damage and rapidly diminishing neurological response.
Decompressive surgery involves removing the lamina of the first and sometimes the second or third cervical vertebrae and part of the occipital bone of the skull to relieve pressure. The flow of spinal fluid may be augmented by a shunt. Since this surgery usually involves the opening of the dura mater and the expansion of the space beneath, a dural graft is usually applied to cover the expanded posterior fossa.
A small number of neurological surgeons believe that detethering the spinal cord as an alternate approach relieves the compression of the brain against the skull opening (foramen magnum), obviating the need for decompression surgery and associated trauma. However, this approach is significantly less documented in the medical literature, with reports on only a handful of patients. It should be noted that the alternative spinal surgery is also not without risk.
Complications of decompression surgery can arise. They include bleeding, damage to structures in the brain and spinal canal, meningitis, CSF fistulas, occipito-cervical instability and pseudomeningeocele. Rare post-operative complications include hydrocephalus and brain stem compression by retroflexion of odontoid. Also, an extended CVD created by a wide opening and big duroplasty can cause a cerebellar "slump". This complication needs to be corrected by cranioplasty.
In certain cases, irreducible compression of the brainstem occurs from in front (anteriorly or ventral) resulting in a smaller posterior fossa and associated Chiari malformation. In these cases, an anterior decompression is required. The most commonly used approach is to operate through the mouth (transoral) to remove the bone compressing the brainstem, typically the odontoid. This results in decompressing the brainstem and therefore gives more room for the cerebellum, thus decompressing the Chiari malformation. Arnold Menzes, MD, is the neurosurgeon who pioneered this approach in the 1970s at the University of Iowa. Between 1984 and 2008 (the MR imaging era), 298 patients with irreducible ventral compression of the brainstem and Chiari type 1 malformation underwent a transoral approach for ventral cervicomedullary decompression at the University of Iowa. The results have been excellent resulting in improved brainstem function and resolution of the Chiari malformation in the majority of patients.