Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Effective solutions for the ear canal include acidifying and drying agents, used either singly or in combination. When the ear canal skin is inflamed from the acute otitis externa, the use of dilute acetic acid may be painful.
Burow's solution is a very effective remedy against both bacterial and fungal external otitis. This is a buffered mixture of aluminum sulfate and acetic acid, and is available without prescription in the United States.
Ear drops are the mainstays of treatment for external otitis. Some contain antibiotics, either antibacterial or antifungal, and others are simply designed to mildly acidify the ear canal environment to discourage bacterial growth. Some prescription drops also contain anti-inflammatory steroids, which help to resolve swelling and itching. Although there is evidence that steroids are effective at reducing the length of treatment time required, fungal otitis externa (also called otomycosis) may be caused or aggravated by overly prolonged use of steroid-containing drops.
Antibiotics by mouth should not be used to treat uncomplicated acute otitis externa. Antibiotics by mouth are not a sufficient response to bacteria which cause this condition and have significant side effects including increased risk of opportunistic infection. In contrast, topical products can treat this condition. Oral anti-pseudomonal antibiotics can be used in case of severe soft tissue swelling extending into the face and neck and may hasten recovery.
Although the acute external otitis generally resolves in a few days with topical washes and antibiotics, complete return of hearing and cerumen gland function may take a few more days. Once healed completely, the ear canal is again self-cleaning. Until it recovers fully, it may be more prone to repeat infection from further physical or chemical insult.
Effective medications include ear drops containing antibiotics to fight infection, and corticosteroids to reduce itching and inflammation. In painful cases a topical solution of antibiotics such as aminoglycoside, polymyxin or fluoroquinolone is usually prescribed. Antifungal solutions are used in the case of fungal infections. External otitis is almost always predominantly bacterial or predominantly fungal, so that only one type of medication is necessary and indicated.
Oral and topical pain killers are effective to treat the pain caused by otitis media. Oral agents include ibuprofen, paracetamol (acetaminophen), and opiates. Topical agents shown to be effective include antipyrine and benzocaine ear drops. Decongestants and antihistamines, either nasal or oral, are not recommended due to the lack of benefit and concerns regarding side effects. Half of cases of ear pain in children resolve without treatment in three days and 90% resolve in seven or eight days. The use of steroids is not supported by the evidence for acute otitis media.
It is important to weigh the benefits and harms before using antibiotics for acute otitis media. As over 82% of acute episodes settle without treatment, about 20 children must be treated to prevent one case of ear pain, 33 children to prevent one perforation, and 11 children to prevent one opposite-side ear infection. For every 14 children treated with antibiotics, one child has an episode of either vomiting, diarrhea or a rash. If pain is present, treatment to reduce it should be initiated.
- Antibiotics should be prescribed for severe bilateral or unilateral disease in all infants and children with severe signs and symptoms, such as moderate to severe ear pain and high fever.
- For bilateral acute otitis media in infants younger than 24 months of age, without severe signs and symptoms, antibiotics should be prescribed.
- When non-severe unilateral acute otitis media is diagnosed in young children either antibiotic therapy is given or observation with close follow-up based on joint decision making between parent(s)/caregiver in infants 6 to 23 months of age. If the child worsens or fails to improve in 2 to 3 days antibiotics should be administered.
- Children 24 months or older with non-severe disease can have either antibiotics or observation.
The first line antibiotic treatment, if warranted, is amoxicillin. If there is resistance or use of amoxicillin in the last 30 days then amoxicillin-clavulanate or another penicillin derivative plus beta lactamase inhibitor is recommended. Taking amoxicillin once a day may be as effective as twice or three times a day. While less than 7 days of antibiotics have less side effects, more than seven days appear to be more effective. If there is no improvement after 2–3 days of treatment a change in therapy may be considered.
A treatment option for chronic suppurative otitis media with discharge is topical antibiotics. A Cochrane review found that topical quinolone antibiotics can improve discharge better than oral antibiotics. Safety is not really clear.
Immediate treatment is very important for someone with orbital cellulitis. Treatment typically involves intravenous (IV) antibiotics in the hospital and frequent observation (every 4–6 hours). Along with this several laboratory tests are run including a complete blood count, differential, and blood culture.
- Antibiotic therapy – Since orbital cellulitis is commonly caused by "Staphylococcus" and "Streptococcus" species both penicillins and cephalosporins are typically the best choices for IV antibiotics. However, due to the increasing rise of MRSA (methicillin-resistant "Staphylococcus aureus") orbital cellulitis can also be treated with Vancomycin, Clindamycin, or Doxycycline. If improvement is noted after 48 hours of IV antibiotics, healthcare professions can then consider switching a patient to oral antibiotics (which must be used for 2–3 weeks).
- Surgical intervention – An abscess can threaten the vision or neurological status of a patient with orbital cellulitis, therefore sometimes surgical intervention is necessary. Surgery typically requires drainage of the sinuses and if a subperiosteal abscess is present in the medial orbit, drainage can be performed endoscopically. Post-operatively, patients must follow up regularly with their surgeon and remain under close observation.
Although orbital cellulitis is considered an ophthalmic emergency the prognosis is good if prompt medical treatment is received.
Removal of debris (wax, shed skin, and pus) from the ear canal promotes direct contact of the prescribed medication with the infected skin and shortens recovery time. When canal swelling has progressed to the point where the ear canal is blocked, topical drops may not penetrate far enough into the ear canal to be effective. The physician may need to carefully insert a wick of cotton or other commercially available, pre-fashioned, absorbent material called an ear wick and then saturate that with the medication. The wick is kept saturated with medication until the canal opens enough that the drops will penetrate the canal without it. Removal of the wick does not require a health professional. Antibiotic ear drops should be dosed in a quantity that allows coating of most of the ear canal and used for no more than 4 to 7 days. The ear should be left open. It is imperative that visualization of an intact tympanic membrane (eardrum) is noted.
Use of certain medications with a ruptured tympanic membrane can cause tinnitus, vertigo, dizziness and hearing loss in some cases.
Antibiotics are usually prescribed, with the agent selected based on suspected organism and presence or absence of purulence, although the best treatment choice is unclear. If an abscess is also present, surgical drainage is usually indicated, with antibiotics often prescribed for co-existent cellulitis, especially if extensive. Pain relief is also often prescribed, but excessive pain should always be investigated, as it is a symptom of necrotizing fasciitis. Elevation of the affected area is often recommended.
Steroids may speed recovery in those on antibiotics.
Antibiotics choices depend on regional availability, but a penicillinase-resistant semisynthetic penicillin or a first-generation cephalosporin is currently recommended for cellulitis without abscess. A course of antibiotics is not effective in between 6 and 37% of cases.
Antibiotics are aimed at gram positive bacteria. Medical attention should be sought if symptoms persist beyond 2–3 days.
Management of ear pain depends on the underlying cause.Most cases of otitis media are self-limiting, resolving spontaneously without treatment within 3–5 days. Age-appropriate analgesics or a warm washcloth placed over the affected ear can help relieve pain until the infection has passed.In some cases ear pain has been treated successfully with manual therapy.
Recovery from an anaerobic infection depends on adequate and rapid management. The main principles of managing anaerobic infections are neutralizing the toxins produced by anaerobic bacteria, preventing the local proliferation of these organisms by altering the environment and preventing their dissemination and spread to healthy tissues.
Toxin can be neutralized by specific antitoxins, mainly in infections caused by Clostridia (tetanus and botulism). Controlling the environment can be attained by draining the pus, surgical debriding of necrotic tissue, improving blood circulation, alleviating any obstruction and by improving tissue oxygenation. Therapy with hyperbaric oxygen (HBO) may also be useful. The main goal of antimicrobials is in restricting the local and systemic spread of the microorganisms.
The available parenteral antimicrobials for most infections are metronidazole, clindamycin, chloramphenicol, cefoxitin, a penicillin (i.e. ticarcillin, ampicillin, piperacillin) and a beta-lactamase inhibitor (i.e. clavulanic acid, sulbactam, tazobactam), and a carbapenem (imipenem, meropenem, doripenem, ertapenem). An antimicrobial effective against Gram-negative enteric bacilli (i.e. aminoglycoside) or an anti-pseudomonal cephalosporin (i.e. cefepime ) are generally added to metronidazole, and occasionally cefoxitin when treating intra-abdominal infections to provide coverage for these organisms. Clindamycin should not be used as a single agent as empiric therapy for abdominal infections. Penicillin can be added to metronidazole in treating of intracranial, pulmonary and dental infections to provide coverage against microaerophilic streptococci, and Actinomyces.
Oral agents adequate for polymicrobial oral infections include the combinations of amoxicillin plus clavulanate, clindamycin and metronidazole plus a macrolide. Penicillin can be added to metronidazole in the treating dental and intracranial infections to cover "Actinomyces" spp., microaerophilic streptococci, and "Arachnia" spp. A macrolide can be added to metronidazole in treating upper respiratory infections to cover "S. aureus" and aerobic streptococci. Penicillin can be added to clindamycin to supplement its coverage against "Peptostreptococcus" spp. and other Gram-positive anaerobic organisms.
Doxycycline is added to most regimens in the treatment of pelvic infections to cover chlamydia and mycoplasma. Penicillin is effective for bacteremia caused by non-beta lactamase producing bacteria. However, other agents should be used for the therapy of bacteremia caused by beta-lactamase producing bacteria.
Because the length of therapy for anaerobic infections is generally longer than for infections due to aerobic and facultative anaerobic bacteria, oral therapy is often substituted for parenteral treatment. The agents available for oral therapy are limited and include amoxacillin plus clavulanate, clindamycin, chloramphenicol and metronidazole.
In 2010 the American Surgical Society and American Society of Infectious Diseases have updated their guidelines for the treatment of abdominal infections.
The recommendations suggest the following:
For mild-to-moderate community-acquired infections in adults, the agents recommended for empiric regimens are: ticarcillin- clavulanate, cefoxitin, ertapenem, moxifloxacin, or tigecycline as single-agent therapy or combinations of metronidazole with cefazolin, cefuroxime, ceftriaxone, cefotaxime, levofloxacin, or ciprofloxacin. Agents no longer recommended are: cefotetan and clindamycin ( Bacteroides fragilis group resistance) and ampicillin-sulbactam (E. coli resistance) and ainoglycosides (toxicity).
For high risk community-acquired infections in adults, the agents recommended for empiric regimens are: meropenem, imipenem-cilastatin, doripenem, piperacillin-tazobactam, ciprofloxacin or levofloxacin in combination with metronidazole, or ceftazidime or cefepime in combination with metronidazole. Quinolones should not be used unless hospital surveys indicate >90% susceptibility of "E. coli" to quinolones.
Aztreonam plus metronidazole is an alternative, but addition of an agent effective against gram-positive cocci is recommended. The routine use of an aminoglycoside or another second agent effective against gram-negative facultative and aerobic bacilli is not recommended in the absence of evidence that the infection is caused by resistant organisms that require such therapy.
Empiric use of agents effective against enterococci is recommended and agents effective against methicillin-resistant "S. aureus" (MRSA) or yeast is not recommended in the absence of evidence of infection due to such organisms.
Empiric antibiotic therapy for health care-associated intra-abdominal should be driven by local microbiologic results. Empiric coverage of likely pathogens may require multidrug regimens that include agents with expanded spectra of activity against gram-negative aerobic and facultative bacilli. These include meropenem, imipenem-cilastatin, doripenem, piperacillin-tazobactam, or ceftazidime or cefepime in combination with metronidazole. Aminoglycosides or colistin may be required.
Antimicrobial regimens for children include an aminoglycoside-based regimen, a carbapenem (imipenem, meropenem, or ertapenem), a beta-lactam/beta-lactamase-inhibitor combination (piperacillin-tazobactam or ticarcillin-clavulanate), or an advanced-generation cephalosporin (cefotaxime, ceftriaxone, ceftazidime, or cefepime) with metronidazole.
Clinical judgment, personal experience, safety and patient compliance should direct the physician in the choice of the appropriate antimicrobial agents. The length of therapy generally ranges between 2 and 4 weeks, but should be individualized depending on the response. In some instances treatment may be required for as long as 6–8 weeks, but can often be shortened with proper surgical drainage.
It is normally possible to establish the cause of ear pain based on the history. It is important to exclude cancer where appropriate, particularly with unilateral otalgia in an adult who uses tobacco or alcohol.Often migraines are caused by middle ear infections which can easily be treated with antibiotics. Often using a hot washcloth can temporarily relieve ear pain.
Cholesteatoma is a persistent disease. Once the diagnosis of cholesteatoma is made in a patient who can tolerate a general anesthetic, the standard treatment is to surgically remove the growth.
The challenge of cholesteatoma surgery is to permanently remove the cholesteatoma whilst retaining or reconstructing the normal functions of the structures housed within the temporal bone.
The general objective of cholesteatoma surgery has two parts. It is both directed against the underlying pathology and directed towards maintaining the normal functions of the temporal bone. These aims are conflicting and this makes cholesteatoma surgery extremely challenging.
Sometimes, the situation results in a clash of surgical aims. The need to fully remove a progressive disease like cholesteatoma is the surgeon's first priority. Preservation of hearing is secondary to this primary aim. If the disease can be removed easily so that there is no increased risk of residual disease, then the ossicles may be preserved. If the disease is difficult to remove, so that there is an increased risk of residual disease, then removal of involved ossicles in order to fully clear cholesteatoma has generally been regarded as necessary and reasonable.
In other words, the aims of cholesteatoma treatment form a hierarchy. The paramount objective is the complete removal of cholesteatoma. The remaining objectives, such as hearing preservation, are subordinate to the need for complete removal of cholesteatoma. This hierarchy of aims has led to the development of a wide range of strategies for the treatment of cholesteatoma.
A boil may clear up on its own without bursting, but more often it will need to be opened and drained. This will usually happen spontaneously within two weeks. Regular application of a warm moist compress, both before and after a boil opens, can help speed healing. The area must be kept clean, hands washed after touching it, and any dressings disposed of carefully, in order to avoid spreading the bacteria. A doctor may cut open or "lance" a boil to allow it to drain, but squeezing or cutting should not be attempted at home, as this may further spread the infection. Antibiotic therapy may be recommended for large or recurrent boils or those that occur in sensitive areas (such as the groin, breasts, armpits, around or in the nostrils, or in the ear). Antibiotics should not be used for longer than one month, with at least two months (preferably longer) between uses, otherwise it will lose its effectiveness. If the patient has chronic (more than two years) boils, removal by plastic surgery may be indicated.
Furuncles at risk of leading to serious complications should be incised and drained if antibiotics or steroid injections are not effective. These include furuncles that are unusually large, last longer than two weeks, or occur in the middle of the face or near the spine. Fever and chills are signs of sepsis and indicate immediate treatment is needed.
Staphylococcus aureus has the ability to acquire antimicrobial resistance easily, making treatment difficult. Knowledge of the antimicrobial resistance of "S. aureus" is important in the selection of antimicrobials for treatment.
Large doses of glucocorticoids are the treatment of choice, and are administered until the signs have resolved. In uncomplicated cases, this can take up to a month. If dogs are not treated promptly and with high doses of steroids, severe scarring may occur. If there is evidence of secondary bacterial infection, treatment with antibiotics is required.
Treatment involves appropriate antibiotic medications, monitoring and protection of the airway in severe cases, and, where appropriate, urgent Otolaryngology-Head and Neck Surgery, maxillo-facial surgery and/or dental consultation to incise and drain the collections. The antibiotic of choice is from the penicillin group.
Incision and drainage of the abscess may be either intraoral or external. An intraoral incision and drainage procedure is indicated if the infection is localized to the sublingual space. External incision and drainage is performed if infection involves the perimandibular spaces.
A nasotracheal tube is sometimes warranted for ventilation if the tissues of the mouth make insertion of an oral airway difficult or impossible.
In cases where the patency of the airway is compromised, skilled airway management is mandatory. Fiberoptic intubation is common.
Ludwig's angina is a life-threatening condition, and carries a fatality rate of about 5%.
The variation in technique in cholesteatoma surgery results from each surgeon's judgment whether to retain or remove certain structures housed within the temporal bone in order to facilitate the removal of cholesteatoma. This typically involves some form of mastoidectomy which may or may not involve removing the posterior ear canal wall and the ossicles.
Removal of the canal wall facilitates the complete clearance of cholesteatoma from the temporal bone in three ways:
1. it removes a large surface onto which cholesteatoma may be adherent;
2. it removes a barrier behind which the cholesteatoma may be hidden;
3. it removes an impediment to the introduction of instruments used for the removal of cholesteatoma.
Thus removal of the canal wall provides one of the most effective strategies for achieving the primary aim of cholesteatoma surgery, the complete removal of cholesteatoma. However, there is a trade-off, since the functional impact of canal wall removal is also important.
The removal of the ear canal wall results in:
- a space, the "mastoid cavity", which is less likely than the original ear canal to resist infection;
- exposure of the ossicles, which may allow the subsequent formation of a new cholesteatoma deep to the ossicles. To prevent this, these ossicles must be removed, which may diminish the patient's hearing.
The formation of a mastoid cavity by removal of the canal wall is the simplest and most effective procedure for facilitating the removal of cholesteatoma, but may bestow the most lasting infirmity due to loss of ear function upon the patient treated in this way.
The following strategies are employed to mitigate the effects of canal wall removal:
1. careful design and construction of the mastoid cavity. This is essential for the health and integrity of the protective sheet of migrating, keratising epithelium which lines the distorted ear canal. This requires the surgeon to saucerise the cavity. A high facial ridge and an inappropriately small cartilaginous meatus are obstructions to epithelial migration and are particularly high risk factors for failure of the self-cleaning mechanism of the external ear.
2. partial obliteration of the mastoid cavity. This can be performed using a wide range of materials. Many of these resorb in time, which means that the long-term results of such surgery are poorer than the short-term results.
3. reconstruction of the ear canal wall. Canal wall reconstruction has been performed using ear canal skin alone, fascia, cartilage, titanium as well as by replacing the original intact wall. If the reconstruction is poorly performed, it may result in a high rate of recurrent cholesteatoma.
4. preservation of the ear canal wall. If poorly performed, it may result in a high rate of both residual and recurrent cholesteatoma.
5. reconstruction of the chain of hearing bones.
Clearly, preservation and restoration of ear function at the same time as total removal of cholesteatoma requires a high level of surgical expertise.
Broad-spectrum intravenous antibiotics are used until a definite pathogen is found.
1. Nafcillin 1.5 g IV q4h
2. Cefotaxime 1.5 to 2 g IV q4h
3. Metronidazole 15 mg/kg load followed by 7.5 mg/kg IV q6h
Vancomycin may be substituted for nafcillin if significant concern exists for infection by methicillin-resistant "Staphylococcus aureus" or resistant "Streptococcus pneumoniae". Appropriate therapy should take into account the primary source of infection as well as possible associated complications such as brain abscess, meningitis, or subdural empyema.
All people with CST are usually treated with prolonged courses (3–4 weeks) of IV antibiotics. If there is evidence of complications such as intracranial suppuration, 6–8 weeks of total therapy may be warranted.
All patients should be monitored for signs of complicated infection, continued sepsis, or septic emboli while antibiotic therapy is being administered.
Steroid therapy is also controversial in many cases of CST. However, corticosteroids are absolutely indicated in cases of pituitary insufficiency. Corticosteroid use may have a critical role in patients with Addisonian crisis secondary to ischaemia or necrosis of the pituitary that complicates CST.
Since this lesion is usually a complication of long standing otitis media, it is important to use an appropriate antibiotic therapy regimen. If the patient fails first line antibiotics, then second-line therapies should be employed, especially after appropriate culture and sensitivity testing. Surgery may be required if there is extension into the mastoid bone, or if a concurrent cholesteatoma is identified during surgery or biopsy. In general, patients have an excellent outcome after appropriate therapy.
Because an acute hematoma can lead to cauliflower ear, prompt evacuation of the blood is needed to prevent permanent deformity. The outer ear is prone to infections, so antibiotics are usually prescribed. Pressure is applied by bandaging, helping the skin and the cartilage to reconnect. Without medical intervention the ear can suffer serious damage. Disruption of the ear canal is possible. The outer ear may wrinkle, and can become slightly pale due to reduced blood flow; hence the common term "cauliflower ear". Cosmetic procedures are available that can possibly improve the appearance of the ear.
Treatment depends on many factors, such as the age of horse, severity of symptoms and duration of infection. As long a horse is eating and drinking, the infection must run its course, much like a common cold virus. Over time a horse will build up enough antibodies to overtake and fight the disease. Other treatment options can be applying heat packs to abscesses to help draw it to the surface and using drawing salves such as Ichthammol. A blood test or bacterial cultures can be taken to confirm the horse is fighting Pigeon Fever. Anti-inflammatory such as phenylbutazone can be used to ease pain and help control swelling. Treating Pigeon Fever with antibiotics is not normally recommended for external abscesses since it is a strong bacterium that takes extended treatment to kill off and to ensure it does not return stronger. However, if the abscesses are internal then antibiotics may be needed. Consulting a veterinarian for treatment is recommended. Making the horse comfortable, ensuring the horse has good food supply and quality hay will help the horse keep their immune system strong to fight off the infection. Once the abscess breaks or pops, it will drain for a week or two. During this time keeping the area clean, applying hot packs or drawing salves will help remove the pus that has gathered in the abscess.
Successful treatment of a dental abscess centers on the reduction and elimination of the offending organisms.
This can include treatment with antibiotics and drainage. If the tooth can be restored, root canal therapy can be performed. Non-restorable teeth must be extracted, followed by curettage of all apical soft tissue.
Unless they are symptomatic, teeth treated with root canal therapy should be evaluated at 1- and 2-year intervals after the root canal therapy to rule out possible lesional enlargement and to ensure appropriate healing.
Abscesses may fail to heal for several reasons:
- Cyst formation
- Inadequate root canal therapy
- Vertical root fractures
- Foreign material in the lesion
- Associated periodontal disease
- Penetration of the maxillary sinus
Following conventional, adequate root canal therapy, abscesses that do not heal or enlarge are often treated with surgery and filling the root tips; and will require a biopsy to evaluate the diagnosis.
"Staphylococcus aureus", "Streptococcus pneumoniae", other streptococci, and anaerobes are the most common causes, depending on the origin of the infection.
The advent of the "Haemophilus influenzae" vaccine has dramatically decreased the incidence.
Courses of treatment typically include the following:
- Draining the pus once awhile as it can build up a strong odor
- Antibiotics when infection occurs.
- Surgical excision is indicated with recurrent fistular infections, preferably after significant healing of the infection. In case of a persistent infection, infection drainage is performed during the excision operation. The operation is generally performed by an appropriately trained specialist surgeon e.g. an otolaryngologist or a specialist General Surgeon.
- The fistula can be excised as a cosmetic operation even though no infection appeared. The procedure is considered an elective operation in the absence of any associated complications.