Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The mainstay of treatment for CCF is endovascular therapy. This may be transarterial (mostly in the case of direct CCF) or transvenous (most commonly in indirect CCF). Occasionally, more direct approaches, such as direct transorbital puncture of the cavernous sinus or cannulation of the draining superior orbital vein are used when conventional approaches are not possible. Spontaneous resolution of indirect fistulae has been reported but is uncommon. Staged manual compression of the ipsilateral carotid has been reported to assist with spontaneous closure in selected cases.
Direct CCF may be treated by occlusion of the affected cavernous sinus (coils, balloon, liquid agents), or by reconstruction of the damaged internal carotid artery (stent, coils or liquid agents).
Indirect CCF may be treated by occlusion of the affected cavernous sinus with coils, liquid agents or a combination of both.
One approach used for treatment is embolization. A six-vessel angiogram is employed to determine the vascular supply to the fistula. Detachable coils, liquid embolic agents like NBCA, and onyx, or combinations of both are injected into the blood vessel to occlude the DAVF. Preoperative embolization can also be used to supplement surgery.
DAVFs are also managed surgically. The operative approach varies depending on the location of the lesion.
Stereotactic radiosurgery
Stereotactic radiosurgery is used obliterating DAVFs post-embolization, and is considered an important adjunct. Use of this method, however, is limited to benign DAVFs that have failed other treatments.
Treatment for fistula varies depending on the cause and extent of the fistula, but often involves surgical intervention combined with antibiotic therapy.
Typically the first step in treating a fistula is an examination by a doctor to determine the extent and "path" that the fistula takes through the tissue.
In some cases the fistula is temporarily covered, for example a fistula caused by cleft palate is often treated with a palatal obturator to delay the need for surgery to a more appropriate age.
Surgery is often required to assure adequate drainage of the fistula (so that pus may escape without forming an abscess). Various surgical procedures are commonly used, most commonly fistulotomy, placement of a seton (a cord that is passed through the path of the fistula to keep it open for draining), or an endorectal flap procedure (where healthy tissue is pulled over the internal side of the fistula to keep feces or other material from reinfecting the channel). Treatment involves filling the fistula with fibrin glue; also plugging it with plugs made of porcine small intestine submucosa have also been explored in recent years, with variable success. Surgery for anorectal fistulae is not without side effects, including recurrence, reinfection, and incontinence. High rate of recurrence and more chances of complications like incontinence are always there in fistula surgeries (Anal Fistula).
It is important to note that surgical treatment of a fistula without diagnosis or management of the underlying condition, if any, is not recommended. For example, surgical treatment of fistulae in Crohn's disease can be effective, but if the Crohn's disease itself is not treated, the rate of recurrence of fistula is very high (well above 50%).
Anticoagulation with heparin is controversial. Retrospective studies show conflicting data. This decision should be made with subspecialty consultation. One systematic review concluded that anticoagulation treatment appeared safe and was associated with a potentially important reduction in the risk of death or dependency.
Broad-spectrum intravenous antibiotics are used until a definite pathogen is found.
1. Nafcillin 1.5 g IV q4h
2. Cefotaxime 1.5 to 2 g IV q4h
3. Metronidazole 15 mg/kg load followed by 7.5 mg/kg IV q6h
Vancomycin may be substituted for nafcillin if significant concern exists for infection by methicillin-resistant "Staphylococcus aureus" or resistant "Streptococcus pneumoniae". Appropriate therapy should take into account the primary source of infection as well as possible associated complications such as brain abscess, meningitis, or subdural empyema.
All people with CST are usually treated with prolonged courses (3–4 weeks) of IV antibiotics. If there is evidence of complications such as intracranial suppuration, 6–8 weeks of total therapy may be warranted.
All patients should be monitored for signs of complicated infection, continued sepsis, or septic emboli while antibiotic therapy is being administered.
Treatment is focused on reducing stroke episodes and damage from a distending artery. Four treatment modalities have been reported in the treatment of vertebral artery dissection. The two main treatments involve medication: anticoagulation (using heparin and warfarin) and antiplatelet drugs (usually aspirin). More rarely, thrombolysis (medication that dissolves blood clots) may be administered, and occasionally obstruction may be treated with angioplasty and stenting. No randomized controlled trials have been performed to compare the different treatment modalities. Surgery is only used in exceptional cases.
From analysis of the existing small treatment trials of cervical artery dissection (carotid and vertebral) it appears that aspirin and anticoagulation (heparin followed by warfarin) are equally effective in reducing the risk of further stroke or death. Anticoagulation is regarded as more powerful than antiplatelet therapy, but anticoagulants may increase the size of the hematoma and worsen obstruction of the affected artery. Anticoagulation may be relatively unsafe if a large stroke has already occurred, as hemorrhagic transformation is relatively common, and if the dissection extends into V4 (carrying a risk of subarachnoid hemorrhage). Anticoagulation may be appropriate if there is rapid blood flow (through a severely narrowed vessel) on transcranial doppler despite the use of aspirin, if there is a completely occluded vessel, if there are recurrent stroke-like episodes, or if free-floating blood clot is visible on scans. Warfarin is typically continued for 3–6 months, as during this time the flow through the artery usually improves, and most strokes happen within the first 6 months after the development of the dissection. Some regard 3 months as sufficient.
Professional guidelines in the UK recommend that patients with VA dissection should be enrolled in a clinical trial comparing aspirin and anticoagulation if possible. American guidelines state that the benefit of anticoagulation is not currently established.
The goal of treatment is to prevent the development or continuation of neurologic deficits. Treatments include observation, anticoagulation, stent implantation and carotid artery ligation.
The formation of a TIF is a medical emergency and requires immediate intervention. Blood volume control, management of the hemorrhage, and adequate oxygenation should be insured in these patients. In a majority of TIF cases (85%), hyperinflation of the tracheostomy cuff will control the bleeding, while the patient is prepared for surgery. However, if this fails the tracheostomy cuff must be removed, and the patient must be intubated from above. Next, pressure from the index finger can be applied on the bleeding site from within the tracheostomy to control the bleeding. In addition, the "Utley Maneuver", which involves digital compression of the artery against the posterior wall of the manubrium of the sternum following a right infraclavicular incision, may be used to urgently control the bleeding When the bleeding is controlled the patient should be immediately transferred on the operating room.
Benign tumors may not require treatment but may need to be monitored for any change in the growth. Growth of the tumors in the nose, lips, or eyelids can be treated with steroid drugs to slow its progress. Steroids can be taken orally or injected directly into the tumor. Applying pressure to the tumor can also be used to minimize swelling at the site of the hemangioma. A procedure that uses small particles to close off the blood supply is known as sclerotherapy. This allows for tumor shrinkage and less pain. It is possible for the tumor to regrow its blood supply after the procedure has been done. If the lesion caused by the cavernous hemangioma is destroying healthy tissue around it or if the patient is experiencing major symptoms, then surgery can be used to remove the tumor piecemeal. A common complication of the surgery is hemorrhage and the loss of blood. There is also the possibility of the hemangioma reoccurring after its removal. Additionally, the risk of a stroke or death is also possible.
Intracerebral hemorrhages is a severe condition requiring prompt medical attention. Treatment goals include lifesaving interventions, supportive measures, and control of symptoms. Treatment depends on the location, extent, and cause of the bleeding. Often, treatment can reverse the damage that has been done.
A craniotomy is sometimes done to remove blood, abnormal blood vessels, or a tumor. Medications may be used to reduce swelling, prevent seizures, lower blood pressure, and control pain.
Treatment for cystic hygroma involves the removal of the abnormal tissue; however complete removal may be impossible without removing other normal areas. Surgical removal of the tumor is the typical treatment provided, with the understanding that additional removal procedures will most likely be required as the lymphangioma grows. Most patients need at least two procedures done for the removal process to be achieved. Recurrence is possible but unlikely for those lesions able to be removed completely via excisional surgery. Radiotherapy and chemical cauteries are not as effective with the lymphangioma than they are with the hemangioma. Draining lymphangiomas of fluid provides only temporary relief, so they are removed surgically. Cystic Hygroma can be treated with OK432 (Picibanil).
The least invasive and most effective form of treatment is now performed by interventional radiologists. A sclerosing agent, such as 1% or 3% sodium tetradecyl sulfate, doxycycline, or ethanol, may be directly injected into a lymphocele. "All sclerosing agents are thought to work by ablating the endothelial cells of the disrupted lymphatics feeding into the lymphocele."
Lymphangioma circumscription can be healed when treated with a flashlamp pulsed dye laser, although this can cause port-wine stains and other vascular lesions.
To prevent an TIF, intubation time should be limited to less than 2 weeks and proper techniques should be used when performing tracheotomies. The occurrence of an TIF can be reduced by using more flexible and blunt tracheostomy tubes and insuring that the tubes are properly aligned in the patients. Placing the tracheostomy between the second and third tracheal rings can minimize the risk of an TIF. Repetitive head movements, especially, hyperextension of the neck should be avoided as since this movement results in contact between the innominate artery and the underside of the tube.
In people with renal failure, requiring dialysis, a cimino fistula is often deliberately created in the arm by means of a short day surgery in order to permit easier withdrawal of blood for hemodialysis.
As a radical treatment for portal hypertension, surgical creation of a portacaval fistula produces an anastomosis between the hepatic portal vein and the inferior vena cava across the omental foramen (of Winslow). This spares the portal venous system from high pressure which can cause esophageal varices, caput medusae, and hemorrhoids.
The procedure was invented by doctors James Cimino and M. J. Brescia in 1966. Before the Cimino fistula was invented, access was through a Scribner shunt, which consisted of a Teflon tube with a needle at each end. Between treatments, the needles were left in place and the tube allowed blood flow to reduce clotting. But Scribner shunts lasted only a few days to weeks. Frustrated by this limitation, James E. Cimino recalled his days as a phlebotomist (blood drawer) at New York City's Bellevue Hospital in the 1950s when Korean War veterans showed up with fistulas caused by trauma. Cimino recognized that these fistulas did not cause the patients harm and were easy places to get repeated blood samples. He convinced surgeon Kenneth Appell to create some in patients with chronic kidney failure and the result was a complete success. Scribner shunts were quickly replaced with Cimino fistulas, and they remain the most effective, longest-lasting method for long-term access to patients' blood for hemodialysis today.
There are several stages to treating an anal fistula:
Definitive treatment of a fistula aims to stop it recurring. Treatment depends on where the fistula lies, and which parts of the internal and external anal sphincters it crosses.
There are several options:
- Doing nothing — a drainage seton can be left in place long-term to prevent problems. This is the safest option although it does not definitively cure the fistula.
- Lay-open of fistula-in-ano — this option involves an operation to cut the fistula open. Once the fistula has been laid open it will be packed on a daily basis for a short period of time to ensure that the wound heals from the inside out. This option leaves behind a scar, and depending on the position of the fistula in relation to the sphincter muscle, can cause problems with incontinence. This option is not suitable for fistulae that cross the entire internal and external anal sphincter.
- Cutting seton — if the fistula is in a high position and it passes through a significant portion of the sphincter muscle, a cutting seton (from the Latin "seta", "bristle") may be used. This involves inserting a thin tube through the fistula tract and tying the ends together outside of the body. The seton is tightened over time, gradually cutting through the sphincter muscle and healing as it goes. This option minimizes scarring but can cause incontinence in a small number of cases, mainly of flatus. Once the fistula tract is in a low enough position it may be laid open to speed up the process, or the seton can remain in place until the fistula is completely cured. This was the traditional modality used by physicians in Ancient Egypt and formally codified by Hippocrates, who used horsehair and linen.
- Seton stitch — a length of suture material looped through the fistula which keeps it open and allows pus to drain out. In this situation, the seton is referred to as a draining seton. The stitch is placed close to the ano-rectal ring – which encourages healing and makes further surgery easy.
- Fistulotomy — till anorectal ring
- Colostomy — to allow healing
- Fibrin glue injection is a method explored in recent years, with variable success. It involves injecting the fistula with a biodegradable glue which should, in theory, close the fistula from the inside out, and let it heal naturally. This method is perhaps best tried before all others since, if successful, it avoids the risk of incontinence, and creates minimal stress for the patient.
- Fistula plug involves plugging the fistula with a device made from small intestinal submucosa. The fistula plug is positioned from the inside of the anus with suture. According to some sources, the success rate with this method is as high as 80%. As opposed to the staged operations, which may require multiple hospitalizations, the fistula plug procedure requires hospitalization for only about 24 hours. Currently, there are two different anal fistula plugs cleared by the FDA for treating ano-rectal fistulae in the United States. This treatment option does not carry any risk of bowel incontinence. In the systematic review published by Dr Pankaj Garg, the success rate of the fistula plug is 65-75%.
- Endorectal advancement flap is a procedure in which the internal opening of the fistula is identified and a flap of mucosal tissue is cut around the opening. The flap is lifted to expose the fistula, which is then cleaned and the internal opening is sewn shut. After cutting the end of the flap on which the internal opening was, the flap is pulled down over the sewn internal opening and sutured in place. The external opening is cleaned and sutured. Success rates are variable and high recurrence rates are directly related to previous attempts to correct the fistula.
- LIFT Technique is a novel modified approach through the intersphincteric plane for the treatment of fistula-in-ano, known as LIFT (ligation of intersphincteric fistula tract) procedure. LIFT procedure is based on secure closure of the internal opening and removal of infected cryptoglandular tissue through the intersphincteric approach. Essential steps of the procedure include, incision at the intersphincteric groove, identification of the intersphincteric tract, ligation of intersphincteric tract close to the internal opening and removal of intersphincteric tract, scraping out all granulation tissue in the rest of the fistulous tract, and suturing of the defect at the external sphincter muscle. The procedure was developed by Thai colorectal surgeon, Arun Rojanasakul, The first reports of preliminary healing result from the procedure were 94% in 2007. Additional ligation of the intersphincteric fistula tract did not improve the outcome after endorectal advancement flap.
- Fistula clip closure (OTSC Proctology) is the latest surgical development, which involves the closure of the internal fistula opening with a superelastic clip made of nitinol (OTSC). During surgery, the fistula tract is debrided with a special fistula brush and the clip is transanally applied with the aid of a preloaded clip applicator. The surgical principle of this technique relies on the dynamic compression and permanent closure of the internal fistula opening by the superelastic clip. Consequently, the fistula tract dries out and heals instead of being kept open by continuous feeding with stool and fecal organisms. This minimally-invasive sphincter-preserving technique has been developed and clinically implemented by the German surgeon Ruediger Prosst. First clinical data of the clip closure technique demonstrate a success rate of 90% for previously untreated fistulae and a success rate of 70% for recurrent fistulae.
- PERFACT Procedure is another latest addition to the armamentarium to treat complex and highly complex fistula-in-ano. It is a minimally cutting procedure as both the anal sphincters (internal and external sphincters) are not cut/damaged at all. Therefore, the risk of incontinence is minimal. PERFACT procedure (proximal superficial cauterization, emptying regularly fistula tracts and curettage of tracts) entails two steps: superficial cauterization of mucosa at and around the internal opening and keeping all the tracts clean. The principle is to permanently close the internal opening by granulation tissue. This is achieved by superficial electrocauterization at and around the internal opening and subsequently allowing the wound to heal by secondary intention. Early results of this procedure are quite encouraging for complex fistula-in-ano (86.4% in highly complex anal fistulae). The procedure is effective even in fistula associated with abscess, supralevator fistula-in-ano and fistula where the internal opening is non-localizable.
A carotid-cavernous fistula (CCF) results from an abnormal communication between the arterial and venous systems within the cavernous sinus in the skull. It is a type of arteriovenous fistula. As arterial blood under high pressure enters the cavernous sinus, the normal venous return to the cavernous sinus is impeded and this causes engorgement of the draining veins, manifesting most dramatically as a sudden engorgement and redness of the eye of the same side.
In the treatment of a brain cavernous hemangioma, neurosurgery is usually the treatment chosen. Research needs to be conducted on the efficacy of treatment with stereotactic radiation therapy, especially on the long-term. However, radiotherapy is still being studied as a form of treatment if neurosurgery is too dangerous due the location of the cavernoma. Genetic researchers are still working on determining the cause of the illness and the mechanism behind blood vessel formation. Clinical trials are being conducted to better assess when it is appropriate to treat a patient with this malformation and with what treatment method. Additionally, long term studies are being conducted because there is no information related to the long-term outlook of patients with cavernoma. A registry exists known as The International Cavernous Angioma Patient Registry collects information from patients diagnosed with cavernoma in order to facilitate discovery of non-invasive treatments.
The natural history of this disorder is not well known. The long term outlook for patients with treated moyamoya seems to be good. While symptoms may seem to improve almost immediately after the in-direct EDAS, EMS, and multiple burr holes surgeries, it will take probably 6–12 months before new vessels can develop to give a sufficient blood supply. With the direct STA-MCA surgery, increased blood supply is immediate.
Once major stroke or bleeding take place, even with treatment, the patient may be left with permanent loss of function so it is very important to treat this condition promptly.
Dr. Michael Scott, MD discusses the success rate for Moyamoya surgery in
Courses of treatment typically include the following:
- Draining the pus once awhile as it can build up a strong odor
- Antibiotics when infection occurs.
- Surgical excision is indicated with recurrent fistular infections, preferably after significant healing of the infection. In case of a persistent infection, infection drainage is performed during the excision operation. The operation is generally performed by an appropriately trained specialist surgeon e.g. an otolaryngologist or a specialist General Surgeon.
- The fistula can be excised as a cosmetic operation even though no infection appeared. The procedure is considered an elective operation in the absence of any associated complications.
The radiocephalic arteriovenous fistula (RC-AVF) is a shortcut between cephalic vein and radial artery at the wrist. It is the recommended first choice for hemodialysis access. Possible underlying causes for failure are stenosis and thrombosis especially in diabetics and those with low blood flow such as due to narrow vessels, arteriosclerosis and advanced age. Reported patency of fistulae after 1 year is about 62.5%.
There is no cure for this disease. Drugs such as antiplatelet agents (including aspirin) are usually given to prevent clots, but surgery is usually recommended. Since moyamoya tends to affect only the internal carotid artery and nearby sections of the adjacent anterior and middle cerebral arteries, surgeons can direct other arteries, such as the external carotid artery or the superficial temporal artery to replace its circulation. The arteries are either sewn directly into the brain circulation, or placed on the surface of the brain to reestablish new circulation after a few weeks.
There are many operations that have been developed for the condition, but currently the most favored are the in-direct procedures EDAS, EMS, and multiple burr holes and the direct procedure STA-MCA. Direct superficial temporal artery (STA) to middle cerebral artery (MCA) bypass is considered the treatment of choice, although its efficacy, particularly for hemorrhagic disease, remains uncertain. Multiple burr holes have been used in frontal and parietal lobes with good neovascularisation achieved.
The EDAS (encephaloduroarteriosynangiosis) procedure is a synangiosis procedure that requires dissection of a scalp artery over a course of several centimeters and then making a small temporary opening in the skull directly beneath the artery. The artery is then sutured to a branch of the middle cerebral artery on the surface of the brain and the bone is replaced.
In the EMS (encephalomyosynangiosis) procedure, the temporalis muscle, which is in the temple region of the forehead, is dissected and through an opening in the skull placed onto the surface of the brain.
In the multiple burr holes procedure, multiple small holes (burr holes) are placed in the skull to allow for growth of new vessels into the brain from the scalp.
In the STA-MCA procedure, the scalp artery (superficial temporal artery or STA) is directly sutured to an artery on the surface of the brain (middle cerebral artery or MCA). This procedure is also commonly referred to as an EC-IC (External Carotid-Internal Carotid) bypass.
All of these operations have in common the concept of a blood and oxygen "starved" brain reaching out to grasp and develop new and more efficient means of bringing blood to the brain and bypassing the areas of blockage. The modified direct anastomosis and encephalo-myo-arterio-synangiosis play a role in this improvement by increasing cerebral blood flow (CBF) after the operation. A significant correlation is found between the postoperative effect and the stages of preoperative angiograms. It is crucial for surgery that the anesthesiologist have experience in managing children being treated for moyamoya, as the type of anesthesia they require is very different from the standard anesthetic children get for almost any other type of neurosurgical procedure.
Some of the most up to date treatments for Moyamoya are explained by top rated surgeons at Boston Children's Hospital in Massachusetts in these
Options include:
- Medications alone (an antiplatelet drug (or drugs) and control of risk factors for atherosclerosis).
- Medical management plus carotid endarterectomy or carotid stenting, which is preferred in patients at high surgical risk and in younger patients.
- Control of smoking, high blood pressure, and high levels of lipids in the blood.
The goal of treatment is to reduce the risk of stroke (cerebrovascular accident). Intervention (carotid endarterectomy or carotid stenting) can cause stroke; however, where the risk of stroke from medical management alone is high, intervention may be beneficial. In selected trial participants with asymptomatic severe carotid artery stenosis, carotid endarterectomy reduces the risk of stroke in the next 5 years by 50%, though this represents a reduction in absolute incidence of all strokes or perioperative death of approximately 6%. In most centres, carotid endarterectomy is associated with a 30-day stroke or mortality rate of < 3%; some areas have higher rates.
Clinical guidelines (such as those of National Institute for Clinical Excellence (NICE) ) recommend that all patients with carotid stenosis be given medication, usually blood pressure lowering medications, anti-clotting medications, anti-platelet medications (such as aspirin or clopidogrel), and especially statins (which were originally prescribed for their cholesterol-lowering effects but were also found to reduce inflammation and stabilize plaque).
NICE and other guidelines also recommend that patients with "symptomatic" carotid stenosis be given carotid endarterectomy urgently, since the greatest risk of stroke is within days. Carotid endarterectomy reduces the risk of stroke or death from carotid emboli by about half.
For people with stenosis but no symptoms, the interventional recommendations are less clear. Such patients have a historical risk of stroke of about 1-2% per year. Carotid endarterectomy has a surgical risk of stroke or death of about 2-4% in most institutions. In the large Asymptomatic Carotid Surgery Trial (ACST) endarterectomy reduced major stroke and death by about half, even after surgical death and stroke was taken into account. According to the Cochrane Collaboration the absolute benefit of surgery is small. For intervention using stents, there is insufficient evidence to support stenting rather than open surgery, and several trials, including the ACST-2, are comparing these 2 procedures.
Some people will have an active infection when they present with a fistula, and this requires clearing up before definitive treatment can be decided.
Antibiotics can be used as with other infections, but the best way of healing infection is to prevent the buildup of pus in the fistula, which leads to abscess formation. This can be done with a seton.