Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The effects of a circulatory collapse vary based on the type of collapse it is. Peripheral collapses usually involve abnormally low blood pressure and result in collapsed arteries and/or veins, leading to oxygen deprivation to tissues, organs, and limbs.
Acute collapse can result from heart failure causing the primary vessels of the heart to collapse, perhaps combined with cardiac arrest.
A very large range of medical conditions can cause circulatory collapse. These include, but are not limited to:
- Surgery, particularly on patients who have lost blood.
- Blood clots, including the use of some platelet-activating factor drugs in some animals and humans
- Dengue Fever
- Severe dehydration
- Shock (including, among other types, many cases of cardiogenic shock- e.g., after a myocardial infarction or during heart failure; distributive shock, hypovolemic shock, resulting from large blood loss; and severe cases of septic shock)
- Heart Disease (myocardial infarction- heart attack; acute or chronic congestive or other heart failure, ruptured or dissecting aneurysms; large, especially hemorrhagic, stroke; some untreated congenital heart defects; failed heart transplant)
- Superior mesenteric artery syndrome
- Drugs that affect blood pressure
- Drinking seawater
- As a complication of dialysis
- Intoxicative inhalants
There are some preliminary studies that seem to indicate that treatment with hydrogen sulfide (HS) can have a protective effect against reperfusion injury.
An intriguing area of research demonstrates the ability of a reduction in body temperature to limit ischemic injuries. This procedure is called therapeutic hypothermia, and it has been shown by a number of large, high-quality randomised trials to significantly improve survival and reduce brain damage after birth asphyxia in newborn infants, almost doubling the chance of normal survival. For a full review see Hypothermia therapy for neonatal encephalopathy.
However, the therapeutic effect of hypothermia does not confine itself to metabolism and membrane stability. Another school of thought focuses on hypothermia’s ability to prevent the injuries that occur after circulation returns to the brain, or what is termed injuries. In fact an individual suffering from an ischemic insult continues suffering injuries well after circulation is restored. In rats it has been shown that neurons often die a full 24 hours after blood flow returns. Some theorize that this delayed reaction derives from the various inflammatory immune responses that occur during reperfusion. These inflammatory responses cause intracranial pressure, pressure which leads to cell injury and in some situations cell death. Hypothermia has been shown to help moderate intracranial pressure and therefore to minimize the harmful effect of a patient’s inflammatory immune responses during reperfusion. Beyond this, reperfusion also increases free radical production. Hypothermia too has been shown to minimize a patient’s production of deadly free radicals during reperfusion. Many now suspect it is because hypothermia reduces both intracranial pressure and free radical production that hypothermia improves patient outcome following a blockage of blood flow to the brain.
The tissues in the mediastinum will slowly resorb the air in the cavity so most pneumomediastinums are treated conservatively. Breathing high flow oxygen will increase the absorption of the air.
If the air is under pressure and compressing the heart, a needle may be inserted into the cavity, releasing the air.
Surgery may be needed to repair the hole in the trachea, esophagus or bowel.
If there is lung collapse, it is imperative the affected individual lies on the side of the collapse, although painful, this allows full inflation of the unaffected lung.
Acute respiratory distress syndrome is usually treated with mechanical ventilation in the intensive care unit (ICU). Mechanical ventilation is usually delivered through a rigid tube which enters the oral cavity and is secured in the airway (endotracheal intubation), or by tracheostomy when prolonged ventilation (≥2 weeks) is necessary. The role of non-invasive ventilation is limited to the very early period of the disease or to prevent worsening respiratory distress in individuals with atypical pneumonias, lung bruising, or major surgery patients, who are at risk of developing ARDS. Treatment of the underlying cause is crucial. Appropriate antibiotic therapy must be administered as soon as microbiological culture results are available, or clinical infection is suspected (whichever is earlier). Empirical therapy may be appropriate if local microbiological surveillance is efficient. The origin of infection, when surgically treatable, must be removed. When sepsis is diagnosed, appropriate local protocols should be enacted.
Treatment depends on the underlying cause. Treatments include iced saline, and topical vasoconstrictors such as adrenalin or vasopressin. Selective bronchial intubation can be used to collapse the lung that is bleeding. Also, endobronchial tamponade can be used. Laser photocoagulation can be used to stop bleeding during bronchoscopy. Angiography of bronchial arteries can be performed to locate the bleeding, and it can often be embolized. Surgical option is usually the last resort, and can involve, removal of a lung lobe or removal of the entire lung. Non–small-cell lung cancer can also be treated with erlotinib or gefitinib. Cough suppressants can increase the risk of choking.
Inhaled nitric oxide (NO) selectively widens the lung's arteries which allows for more blood flow to open alveoli for gas exchange. Despite evidence of increased oxygenation status, there is no evidence that inhaled nitric oxide decreases morbidity and mortality in people with ARDS. Furthermore, nitric oxide may cause kidney damage and is not recommended as therapy for ARDS regardless of severity.
Treatment is directed at correcting the underlying cause. Post-surgical atelectasis is treated by physiotherapy, focusing on deep breathing and encouraging coughing. An incentive spirometer is often used as part of the breathing exercises. Walking is also highly encouraged to improve lung inflation. People with chest deformities or neurologic conditions that cause shallow breathing for long periods may benefit from mechanical devices that assist their breathing. One method is continuous positive airway pressure, which delivers pressurized air or oxygen through a nose or face mask to help ensure that the alveoli do not collapse, even at the end of a breath. This is helpful, as partially inflated alveoli can be expanded more easily than collapsed alveoli. Sometimes additional respiratory support is needed with a mechanical ventilator.
The primary treatment for acute massive atelectasis is correction of the underlying cause. A blockage that cannot be removed by coughing or by suctioning the airways often can be removed by bronchoscopy. Antibiotics are given for an infection. Chronic atelectasis is often treated with antibiotics because infection is almost inevitable. In certain cases, the affected part of the lung may be surgically removed when recurring or chronic infections become disabling or bleeding is significant. If a tumor is blocking the airway, relieving the obstruction by surgery, radiation therapy, chemotherapy, or laser therapy may prevent atelectasis from progressing and recurrent obstructive pneumonia from developing.
Cardiovascular disease is treatable with initial treatment primarily focused on diet and lifestyle interventions. Influenza may make heart attacks and strokes more likely and therefore influenza vaccination may decrease the chance of cardiovascular events and death in people with heart disease.
Proper CVD management necessitates a focus on MI and stroke cases due to their combined high mortality rate, keeping in mind the cost-effectiveness of any intervention, especially in developing countries with low or middle income levels. Regarding MI, strategies using aspirin, atenolol, streptokinase or tissue plasminogen activator have been compared for quality-adjusted life-year (QALY) in regions of low and middle income. The costs for a single QALY for aspirin, atenolol, streptokinase, and t-PA were $25, $630–$730, and $16,000, respectively. Aspirin, ACE inhibitors, beta blockers, and statins used together for secondary CVD prevention in the same regions showed single QALY costs of $300–400.
While a healthy diet is beneficial, the effect of antioxidant supplementation (vitamin E, vitamin C, etc.) or vitamins has not been shown to protect against cardiovascular disease and in some cases may possibly result in harm. Mineral supplements have also not been found to be useful. Niacin, a type of vitamin B3, may be an exception with a modest decrease in the risk of cardiovascular events in those at high risk. Magnesium supplementation lowers high blood pressure in a dose dependent manner. Magnesium therapy is recommended for people with ventricular arrhythmia associated with torsades de pointes who present with long QT syndrome as well as for the treatment of people with digoxin intoxication-induced arrhythmias. There is no evidence to support omega-3 fatty acid supplementation.
Prevention is a more successful strategy than treatment. By using the most conservative decompression schedule reasonably practicable, and by minimizing the number of major decompression exposures, the risk of DON may be reduced. Prompt treatment of any symptoms of decompression sickness (DCS) with recompression and hyperbaric oxygen also reduce the risk of subsequent DON.
Treatment is difficult, often requiring a joint replacement. Spontaneous improvement occasionally happens and some juxta-articular lesions do not progress to collapse. Other treatments include immobilization and osteotomy of the femur. Cancellous bone grafts are of little help.
Preventing alveolar overdistension – Alveolar overdistension is mitigated by using small tidal volumes, maintaining a low plateau pressure, and most effectively by using volume-limited ventilation.
Preventing cyclic atelectasis (atelectotrauma) – Applied positive end-expiratory pressure (PEEP) is the principal method used to keep the alveoli open and lessen cyclic atelectasis.
Open lung ventilationn – Open lung ventilation is a ventilatory strategy that combines small tidal volumes (to lessen alveolar overdistension) and an applied PEEP above the low inflection point on the pressure-volume curve (to lessen cyclic atelectasis).
High frequency ventilation is thought to reduce ventilator-associated lung injury, especially in the context of ARDS and acute lung injury.
Permissive hypercapnia and hypoxaemia allow the patient to be ventilated at less aggressive settings and can thererfore mitigate all forms of ventilator associated lung injury
If the symptoms are severe enough, treatment may be needed. These range from medical management over mechanical ventilation (both continuous positive airway pressure (CPAP), or bi-level positive airway pressure (BiPAP) to tracheal stenting and surgery.
Surgical techniques include aortopexy, tracheopexy, tracheobronchoplasty, and tracheostomy. The role of the nebulised recombinant human deoxyribonuclease (rhDNase) remains inconclusive.
The treatment in viral or idiopathic pericarditis is with aspirin, or non-steroidal anti-inflammatory drugs (NSAIDs such as ibuprofen). Colchicine may be added to the above as it decreases the risk of further episodes of pericarditis.
Severe cases may require one or more of the following:
- pericardiocentesis to treat pericardial effusion/tamponade
- antibiotics to treat tuberculosis or other bacterial causes.
- steroids are used in acute pericarditis but are not favored because they increase the chance of recurrent pericarditis.
- in rare cases, surgery
- in cases of constrictive pericarditis, pericardiectomy
Collapsed veins are a common result of chronic use of intravenous injections. They are particularly common where injecting conditions are less than ideal, such as in the context of drug abuse.
Veins may become temporarily blocked if the internal lining of the vein swells in response to repeated injury or irritation. This may be caused by the needle, the substance injected, or donating plasma. Once the swelling subsides, the circulation will often become re-established.
Permanent vein collapse occurs as a consequence of:
- Long-term injecting
- Repeated injections, especially with blunt needles
- Poor technique
- Injection of substances which irritate the veins; in particular, injection of liquid methadone intended for oral use.
Smaller veins may collapse as a consequence of too much suction being used when pulling back against the plunger of the syringe to check that the needle is in the vein. This will pull the sides of the vein together and, especially if they are inflamed, they may stick together causing the vein to block. Removing the needle too quickly after injecting can have a similar effect.
Collapsed veins may never recover. Many smaller veins are created by the body to circulate the blood, but they are not adequate for injections or IVs.
The use of steroids (Dexamethasone) coupled with an antibiotic (Amoxicillin) will support the kitten in a number of ways, the steroid enhancing maturation and the antibiotic addressing the possibility of underlying infection and compensating for the immuno-depressant properties of the steroid. The steroid will also encourage the kitten to feed more energetically, keeping its weight up. Several breeders believe that Taurine plays a part in the condition, and it may be that some cases are Taurine-related. These breeders give the queen large doses of Taurine (1000 mg) daily until the kittens recover – apparently within a few days. Given that most FCKS cases take weeks rather than days to recover, this supplement may be relevant.
Chloramphenicol therapy should be stopped immediately. Exchange transfusion may be required to remove the drug. Sometimes, phenobarbital (UGT induction) is used.
The condition can be prevented by using chloramphenicol at the recommended doses and monitoring blood levels, or alternatively, third generation cephalosporins can be effectively substituted for the drug, without the associated toxicity.
Treatment is difficult to define given the number of different causes and the wealth of anecdotal information collected by and from cat breeders. Treatments have hitherto been based on the assumption that FCKS is caused by a muscular spasm, and their effectiveness is impossible to assess because some kittens will recover spontaneously without intervention.
Diaphragmatic spasm is easily tested for and treated by short term interruption of the Phrenic nerve. The nerve runs down the outside of the neck where the neck joins to the shoulder, within a bundle of muscles and tendons at this junction. The cluster can be pinched gently and held for a few seconds each time. Kittens with spasmodic FCKS will show almost immediate improvement, but the treatment may need to be repeated several times over a few days as the spasm may have a tendency to recur. [Um für diapragmatisch Sparmus zu prüfen, Sie müssen der Phrenikus finden (es heisst auch der Zwerchfellnerv), der lauft am aussen des Hals, wo der Hals trifft die Schulter. Da gibt es mehrere Muskeln und Sehnen–da es unmoeglich ist die Nerv allein zu finden bzw. kneifen, müssen Sie die ganze Menge zusammen ruhig kneifen für ein paar Sekunden. Wenn es doch diapragmatisch Spasmus ist und Sie das Phrenikus gut kneifest (manchmal aber nicht immer werde die Katze mit den hinteren Beinen kicken), sollen Sie sofort eine Verbesserung anschauen. Es kann sein, dass die Spasmus wieder kommt nachher im kommenden Tage—in dem Fall müssen Sie es nochmal machen. Wenn Sie aber keine Verbesserung siehst, ist der Problem dann leider etwas anders.]
Continuous positive air pressure (CPAP) is used in human babies with lung collapse, but this is impossible with kittens. It is possible that the success of some breeders in curing kittens by splinting the body, thus putting pressure on the ribcage, was successful as it has created the effect of positive air pressure, thus gradually re-inflating the lungs by pulling them open rather than pushing them open as is the case with CPAP.
Surgical decompression can be achieved by opening the abdominal wall and abdominal fascia anterior in order to physically create more space for the abdominal viscera. Once opened, the fascia can be bridged for support and to prevent loss of domain by a variety of medical devices (Bogota bag, artificial bur, and vacuum devices using negative pressure wound therapy ).
Pneumothorax can be a medical emergency, as it can become associated with decreased lung function, and if progressed to tension pneumothorax, potentially fatal. A chest tube should be inserted after clinical assessment. This releases the air and menstrual blood, and the lung can re-expand.
Surgery, hormonal treatments and combined approaches have all been proposed, with variable results in terms of short and long term outcome. Surgical removal of the endometrial tissue should be endeavoured during menstruation for optimal visualisation of the cyst. Pleurodesis may also be helpful. Menstruation and accompanying lung collapse can be suppressed with hormone therapy, like with Lupron Depot, danazol or extended cycle combined oral contraceptive pills.
Before the development of modern cardiovascular surgery, cases of acute mediastinitis usually arose from either perforation of the esophagus or from contiguous spread of odontogenic or retropharyngeal infections. However, in modern practice, most cases of acute mediastinitis result from complications of cardiovascular or endoscopic surgical procedures.
Treatment usually involves aggressive intravenous antibiotic therapy and hydration. If discrete fluid collections or grossly infected tissue have formed (such as abscesses), they may have to be surgically drained or debrided.
Collapse is a sudden and often unannounced loss of postural tone (going weak), often but not necessarily accompanied by loss of consciousness.
If the episode was accompanied by a loss of consciousness, the term syncope is used. The main causes are cardiac (e.g. due to irregular heart beat, low blood pressure), seizures or a psychological cause. The main tool in distinguishing the causes is careful history on the events before, during and after the collapse, from the patient as well as from any possible witnesses. Other investigations may be performed to further strengthen the diagnosis, but many of these have a low yield.