Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Cardiac fibroma is commonly treated through surgical excision procedures. The removal of cardiac tumors require an open heart surgery. During the surgery, the surgeon removes the tumor and tissues around it to reduce the risk of the tumor returning. A heart-lung machine is used to take over the work of the heart and lungs because surgery is complicated and requires a still heart. The recovery is usually between 4–5 days in the hospital and 6 weeks in total. An echocardiogram is taken every year to make sure the tumor has not returned or formed any new growth.
If surgery is too difficult, a heart transplantation is a second option. Continuous observations and checkups are recommended to monitor the condition. In cases of arrhythmias, anti-arrhythmic medication is given before surgical treatments are considered. There has been excellent outcomes for individuals who undergo surgery to remove the tumor. If the tumor is completely resected, individuals will have a disease-free survival. If the tumor is incomplete it will continue to grow and recurrence of symptoms occur.
If the tumor is found incidentally in an asymptomatic person, the treatment approach is controversial. Certainly a conservative approach is warranted in certain individuals. If the tumor is large and pedunculated, a case may be made for surgical excision prior to symptoms developing due to the higher risk of embolism. However, this is still considered controversial.
If the papillary fibroelastoma is associated with symptoms, surgical excision is generally recommended for relief of symptoms. A minimally invasive approach may be possible if the tumor involves the aortic valve or right atrium. In the case of aortic valve involvement, excision of the tumor is often valve-sparing, meaning that replacement of the valve with a prosthetic valve is not necessary. Repair of the native valve with a pericardial patch has been described.
Myxomas are usually removed surgically. The surgeon removes the myxoma, along with at least 5 surrounding millimeters of atrial septum. The septum is then repaired, using material from the pericardium.
Certain antiparkinson drugs, although targeted at dopaminergic receptors, cross-react with serotoninergic 5-HT receptors as well, and have been reported to cause cardiac fibrosis.
These drugs include pergolide and cabergoline.
Pergolide was an antiparkinson medications that was in decreasing use since reported in 2003 to be associated with cardiac fibrosis. In March 2007, pergolide was withdrawn from the U.S. market due to serious valvular damage that was shown in two independent studies.
The primary goal of medications is to relieve symptoms such as chest pain, shortness of breath, and palpitations. Beta blockers are considered first-line agents, as they can slow down the heart rate and decrease the likelihood of ectopic beats. For people who cannot tolerate beta blockers, nondihydropyridine calcium channel blockers such as verapamil can be used, but are potentially harmful in people who also have low blood pressure or severe shortness of breath at rest. These medications also decrease the heart rate, though their use in people with severe outflow obstruction, elevated pulmonary artery wedge pressure, and low blood pressures should be done with caution. Dihydropyridine calcium channel blockers should be avoided in people with evidence of obstruction. For people whose symptoms are not relieved by the above treatments, disopyramide can be considered for further symptom relief. Diuretics can be considered for people with evidence of fluid overload, though cautiously used in those with evidence of obstruction. People who continue to have symptoms despite drug therapy can consider more invasive therapies. Intravenous phenylephrine (or another pure vasoconstricting agent) can be used in the acute setting of low blood pressure in those with obstructive hypertrophic cardiomyopathy who do not respond to fluid administration.
As previously stated, management of HFpEF is primarily dependent on the treatment of symptoms and exacerbating conditions. Currently treatment with ACE inhibitors, calcium channel blockers, beta blockers, and angiotensin receptor blockers are employed but do not have a proven benefit in HFpEF patients. Additionally, use of Diuretics or other therapies that can alter loading conditions or blood pressure should be used with caution. It is not recommended that patients be treated with phosphodiesterase-5-inhibitors or digoxin.
Antimineralocorticoid is currently recommended for patients with HFpEF who show elevated brain natriuretic peptide levels. Spironolactone is the first member of this drug class and the most frequently employed. Care should be taken to monitor serum potassium levels as well as kidney function, specifically glomerular filtration rate during treatment.
Beta blockers play a rather obscure role in HFpEF treatment but appear to play a beneficial role in patient management. There is currently a deficit of clinical evidence to support a particular benefit for HFpEF patients, with most evidence resulting from HFpEF patients' inclusion in broader heart failure trials. However, some evidence suggests that vasodilating beta blockers, such as nebivolol, can provide a benefit for patients with heart failure regardless of ejection fraction. Additionally, because of the chronotropic perturbation and diminished LV filling seen in HFpEF the bradycardic effect of beta blockers may enable improved filling, reduced myocardial oxygen demand and lowered blood pressure. However, this effect also can contribute to diminished response to exercise demands and can result in an excessive reduction in heart rate.
ACE inhibitors do not appear to improve morbidity or mortality associated with HFpEF alone. However, they are important in the management of hypertension, a significant player in the pathophysiology of HFpEF.
Angiotensin II receptor blocker treatment shows an improvement in diastolic dysfunction and hypertension that is comparable to other anti-hypertensive medication.
Drug therapy can slow down progression and in some cases even improve the heart condition. Standard therapy may include salt restriction, ACE inhibitors, diuretics, and beta blockers. Anticoagulants may also be used for antithrombotic therapy. There is some evidence for the benefits of coenzyme Q10 in treating heart failure.
Artificial pacemakers may be used in patients with intraventricular conduction delay, and implantable cardioverter-defibrillators in those at risk of arrhythmia. These forms of treatment have been shown to prevent sudden cardiac death, improve symptoms, and reduce hospitalization in patients with systolic heart failure.
Despite increasing incidence of HFpEF effective inroads to therapeutics have been largely unsuccessful. Currently, recommendations for treatment are directed at symptom relief and co-morbid conditions. Frequently this involves administration of diuretics to relieve complications associated with volume overload, such as leg swelling and high blood pressure.
Commonly encountered conditions that must be treated for and have independent recommendations for standard of care include atrial fibrillation, coronary artery disease, hypertension, and hyperlipidemia. There are particular factors unique to HFpEF that must be accounted for with therapy. Unfortunately, currently available randomized clinical trials addressing the therapeutic adventure for these conditions in HFpEF present conflicting or limited evidence.
Specific aspects of therapeutics should be avoided in HFpEF to prevent the deterioration of the condition. Considerations that are generalizable to heart failure include avoidance of a fast heart rate, elevations in blood pressure, development of ischemia, and atrial fibrillation. More specific to HFpEF include avoidance of preload reduction. As patients display normal ejection fraction but reduced cardiac output they are especially sensitive to changes in preloading and may rapidly display signs of output failure. This means administration of diuretics and vasodilators must be monitored carefully.
HFrEF and HFpEF represent distinct entities in terms of development and effective therapeutic management. Specifically cardiac resynchronization, administration of beta blockers and angiotensin converting enzyme inhibitors are applied to good effect in HFrEF but are largely ineffective at reducing morbidity and mortality in HFpEF. Many of these therapies are effective in reducing the extent of cardiac dilation and increasing ejection fraction in HFrEF patients. It is unsurprising they fail to effect improvement in HFpEF patients, given their un-dilated phenotype and relative normal ejection fraction. Understanding and targeting mechanisms unique to HFpEF are thus essential to the development of therapeutics.
Randomized studies on HFpEF patients have shown that exercise improves left ventricular diastolic function, the heart's ability to relax, and is associated with improved aerobic exercise capacity. The benefit patients seem to derive from exercise does not seem to be a direct cardiac effect but rather is due to changes in peripheral vasculature and skeletal muscle, which show abnormalities in HFpEF patients.
Patients should be regularly assessed to determine progression of the condition, response to interventions, and need for alteration of therapy. Ability to perform daily tasks, hemodynamic status, kidney function, electrolyte balance, and serum natriuretic peptide levels are important parameters. Behavioral management is important in these patients and it is recommended that individuals with HFpEF avoid alcohol, smoking, and high sodium intake.
A significant number of people with hypertrophic cardiomyopathy do not have any symptoms and will have normal life expectancies, although they should avoid particularly strenuous activities or competitive athletics, and should be screened for risk factors for sudden cardiac death. In people with resting or inducible outflow obstructions, situations that will cause dehydration or vasodilation (such as the use of vasodilatory or diuretic blood pressure medications) should be avoided. Septal reduction therapy is not recommended in asymptomatic people.
The cause of development for cardiac fibroma is still unknown or unexplained. Some of these cases are observed to be linked to Gorlin syndrome; a complex genetic disorder causing the formation of tumors in various parts of the body. Research is currently being undertaken to identify relevant casual factors. Currently, there are no known methods for preventing cardiac fibroma.
Treatment of TIC involves treating both the tachyarrhythmia and the heart failure with the goal of adequate rate control or restoration of the normal heart rhythm (aka. normal sinus rhythm) to reverse the cardiomyopathy. The treatment of the tachyarrhythmia depends on the specific arrhythmia, but possible treatment modalities include rate control, rhythm control with antiarrhythmic agents and cardioversion, radiofrequency (RF) catheter ablation, or AV node ablation with permanent pacemaker implantation.
For TIC due to atrial fibrillation, rate control, rhythm control, and RF catheter ablation can be effective to control the tachyarrhythmia and improve left ventricular systolic function. For TIC due to atrial flutter, rate control is often difficult to achieve, and RF catheter ablation has a relatively high success rate with a low risk of complications. In patients with TIC due to other types of SVT, RF catheter ablation is recommended as a first-line treatment. In patients with TIC due to VT or PVCs, both antiarrhythmics and RF catheter ablation can be used. However, the options for antiarrhythmic agents are limited because certain agents can be proarrhythmic in the setting of myocardial dysfunction in TIC. Therefore, RF catheter ablation is often a safe and effective choice for treatment VT and PVCs causing TIC. In cases where other treatment strategies fail, AV node ablation with permanent pacemaker implantation can also be used to treat the tachyarrhythmia.
The treatment of heart failure commonly involves neurohormonal blockade with beta-blockers and angiotensin convertase inhibitors (ACEIs) or angiotensin II receptor blockers (ARBs) along with symptomatic management with diuretics. Beta-blockers and ACE inhibitors can inhibit and potentially reverse the negative cardiac remodeling, which refers to structural changes in the heart, that occurs in TIC. However, the need to continue these agents after treatment of the tacharrhythmia and resolution of left ventricular systolic dysfunction remains controversial.
Many factors influence the time course and extent of remodeling, including the severity of the injury, secondary events (recurrent ischemia or infarction), neurohormonal activation, genetic factors and gene expression, and treatment. Medications may attenuate remodeling. Angiotensin-converting enzyme (ACE) inhibitors have been consistently shown to decrease remodeling in animal models or transmural infarction and chronic pressure overload. Clinical trials have shown that ACE inhibitor therapy after myocardial infarction leads to improved myocardial performance, improved ejection fraction, and decreased mortality compared to patients treated with placebo. Likewise, inhibition of aldosterone, either directly or indirectly, leads to improvement in remodeling. Carvedilol, a 3rd generation beta blocker, may actually reverse the remodeling process by reducing left ventricular volumes and improving systolic function. Early correction of congenital heart defects, if appropriate, may prevent remodeling, as will treatment of chronic hypertension or valvular heart disease. Often, reverse remodeling, or improvement in left ventricular function, will also be seen.
Medications to treat CPVT include beta blockers and verapamil.
Flecainide inhibits the release of the cardiac ryanodine receptor–mediated Ca, and is therefore believed to medicate the underlying molecular cause of CPVT in both mice and humans.
Implantable cardioverter-defibrillators are used to prevent sudden death.
When discovered, hemopericardium is usually treated by pericardiocentesis, a procedure wherein a needle is used to remove the fluid from the pericardial sac. This procedure typically utilizes an 8-cm, 18-gauge needle that is inserted between the xiphoid process and the left costal margin until it enters the pericardial sac, when it can then be used to drain the fluid from the sac. A catheter is often left in the pericardium to continue draining any remaining fluid after the initial procedure. The catheter can be removed when the hemopericardium no longer persists. The underlying causes of the condition, such as over-prescription of anticoagulants, must be addressed as well so that the hemopericardium does not return.
While hemopericardium itself is not fatal, it may lead to cardiac tamponade, which can be deadly if not treated promptly. One study found that cardiac tamponade was fatal in 13.3% of cases in which it was not caused by a malignant disease.
In people with symptoms, digoxin and diuretics may help. For people with moderate to severe dysfunction, cardiac function can be supported by use of inotropes such as milrinone in the acute phase, followed by oral therapy with ACE inhibitors when tolerated.
In several small case series and randomized control trials, systemic corticosteroids have shown to have beneficial effects in people with proven myocarditis. However, data on the usefulness of corticosteroids should be interpreted with caution, since 58% of adults recover spontaneously, while most studies on children lack control groups.
A 2015 Cochrane review found no evidence of benefit of using intravenous immunoglobulin (IVIG) in adults and tentative benefit in certain children. It is not recommended routinely until there is better evidence.
Medications, while included in guidelines, have not been shown to improve survival to hospital discharge following out-of-hospital cardiac arrest. This includes the use of epinephrine, atropine, lidocaine, and amiodarone. Epinephrine is generally recommended every five minutes. Vasopressin overall does not improve or worsen outcomes compared to epinephrine.
Epinephrine does appear to improve short-term outcomes such as return of spontaneous circulation. Some of the lack of long-term benefit may be related to delays in epinephrine use. While evidence does not support its use in children guidelines state its use is reasonable. Lidocaine and amiodarone are also deemed reasonable in children with cardiac arrest who have a shockable rhythm. The general use of sodium bicarbonate or calcium is not recommended.
The 2010 guidelines from the American Heart Association no longer contain the recommendation for using atropine in pulseless electrical activity and asystole due to the lack of evidence for its use. Neither lidocaine nor amiodarone, in those who continue in ventricular tachycardia or ventricular fibrillation despite defibrillation, improves survival to hospital discharge but both equally improve survival to hospital admission.
Thrombolytics when used generally may cause harm but may be of benefit in those with a confirmed pulmonary embolism as the cause of arrest. Evidence for use of naloxone in those with cardiac arrest due to opioids is unclear but it may still be used. In those with cardiac arrest due to local anesthetic lipid emulsion may be used.
Each of the symptoms of situs ambiguous must be managed with appropriate treatment dependent upon the organ system involved. Intestinal malrotation is treated surgically using the Ladd procedure. This procedure widens a fold in the peritoneum so that the intestines can be placed in non-rotated formation. Unfortunately, it is not possible to return the bowel to a normal morphology However, 89% of patients that undergo the Ladd surgery experience a complete resolution of symptoms.
Following cholangiogram, a Kasai Procedure is usually performed in cases of biliary atresia. In this surgery, a Y-shaped shunt is used to passage bile from the liver directly to the intestine. If this is unsuccessful, liver transplantation can be considered based on the overall health of the patient. Fortunately, the Kasai Procedure is successful in approximately 80% of patients. Following the operation, patients are advised to take fat-soluble vitamins, choleretics, and anti-inflammatory medications.
Functionally asplenic patients have an elevated lifetime risk of septicemia, as they have no functional spleen for fighting infection. For this reason, asplenic patients are under constant observation for any signs of fever or infection. In the case of infection, patients are placed on controlled empiric antibiotic therapy to avoid development of antibiotic resistance. This therapy battles infection by both gram-positive and gram-negative bacteria.
Right-atrial and left-atrial isomerism and associated pulmonary issues are treated in a series of steps based on the severity of symptoms. Isomeric patients are first treated by inserting a shunt that will move incoming blood through the pulmonary circuit. The Fontan procedure routes blood through the patient's single ventricle, to the lungs, and into systemic circulation. This process is favorable in patients aged 2 – 5 years old. Unfortunately, 20-30% of patients will require a heart transplant. Left-atrial isomeric patients have less severe complications, as they typically have 2 functional ventricles. In this case, they can undergo biventricular repair to form 2 separate ventricles and functional associated valves.
Prognosis for patients with situs ambiguous is quite varied, considering the spectrum of clinical complications. Infants who experience severe cyanosis at birth die within hours of delivery if medical intervention is not immediate. Alternatively, longevity of neonates with mild cardiac lesions is unaffected. Ten percent of patients born with right atrial isomerism die by the age of 5 without intervention. Fortunately, improvements in therapies has increased the 5-year survival to 30-74% for right atrial isomeric patients and 65-84% for left atrial isomeric patients based on the cause of their disease.
People who do not respond to conventional therapy are candidates for bridge therapy with left ventricular assist devices. Heart transplantation is reserved for people who fail to improve with conventional therapy.
Extracorporeal membrane oxygenation may be used in those who are about to go into cardiac arrest.
The prognosis for TIC after treatment of the underlying tachyarrhythmia is generally good. Studies show that left ventricular function often improves within 1 month of treatment of the tachyarrhythmia, and normalization of the left ventricular ejection fraction occurs in the majority of patients by 3 to 4 months. In some patients however, recovery of this function can take greater than 1 year or be incomplete. In addition, despite improvement in the left ventricular ejection fraction, studies have demonstrated that patients with prior TIC continue to demonstrate signs of negative cardiac remodeling including increased left ventricular end-systolic dimension, end-systolic volume, and end-diastolic volume. Additionally, recurrence of the tachyarrhythmia in patients with a history of TIC has been associated with a rapid decline in left ventricular ejection fraction and more severe cardiomyopathy that their prior presentation, which may be a result of the negative cardiac remodeling. There have also been cases of sudden death in patients with a history of TIC, which may be associated with worse baseline left ventricular dysfunction. Given these risks, routine monitoring with clinic visits, ECG, and echocardiography is recommended.
Hemopericardium has been reported to result from various afflictions including chest trauma, free wall rupture after a myocardial infarction, bleeding into the pericardial sac following a type A aortic dissection, and as a complication of invasive cardiac procedures. Acute leukemia has also been reported as a cause of the condition. Several cases of hemopericardium have also been reported as a side-effect of anticoagulants. Patients should be made aware of this fact when prescribed these drugs.
Diet alone cannot treat pacemaker syndrome, but an appropriate diet to the patient, in addition to the other treatment regimens mentioned, can improve the patient's symptoms. Several cases mentioned below:
- For patients with heart failure, low-salt diet is indicated.
- For patients with autonomic insufficiency, a high-salt diet may be appropriate.
- For patients with dehydration, oral fluid rehydration is needed.
No specific drugs are used to treat pacemaker syndrome directly because treatment consists of upgrading or reprogramming the pacemaker.