Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Intake of carbohydrates which must be converted to G6P to be utilized (e.g., galactose and fructose) should be minimized. Although elemental formulas are available for infants, many foods contain fructose or galactose in the forms of sucrose or lactose. Adherence becomes a contentious treatment issue after infancy.
The primary treatment goal is prevention of hypoglycemia and the secondary metabolic derangements by frequent feedings of foods high in glucose or starch (which is readily digested to glucose). To compensate for the inability of the liver to provide sugar, the total amount of dietary carbohydrate should approximate the 24-hour glucose production rate. The diet should contain approximately 65–70% carbohydrate, 10–15% protein, and 20–25% fat. At least a third of the carbohydrates should be supplied through the night, so that a young child goes no more than 3–4 hours without carbohydrate intake
In the last 30 years, two methods have been used to achieve this goal in young children: (1) continuous nocturnal gastric infusion of glucose or starch; and (2) night-time feedings of uncooked cornstarch. An elemental formula, glucose polymer, and/or cornstarch can be infused continuously through the night at a rate supplying 0.5–0.6 g/kg/h of glucose for an infant, or 0.3–0.4 for an older child. This method requires a nasogastric or gastrostomy tube and pump. Sudden death from hypoglycemia has occurred due to malfunction or disconnection, and periodic cornstarch feedings are now preferred to continuous infusion.
Cornstarch is an inexpensive way to provide gradually digested glucose. One tablespoon contains nearly 9 g carbohydrate (36 calories). Although it is safer, less expensive, and requires no equipment, this method does require that parents arise every 3–4 hours to administer the cornstarch. A typical requirement for a young child is 1.6 g/kg every 4 hours.
Long-term management should eliminate hypoglycemic symptoms and maintain normal growth. Treatment should achieve normal glucose, lactic acid, and electrolyte levels, and only mild elevations of uric acid and triglycerides.
Ketosis is deliberately induced by use of a ketogenic diet as a medical intervention in cases of intractable epilepsy. Other uses of low-carbohydrate diets remain controversial. Carbohydrate deprivation to the point of ketosis has been argued to have both negative and positive effects on health.
To treat people with a deficiency of this enzyme, they must avoid needing gluconeogenesis to make glucose. This can be accomplished by not fasting for long periods, and eating high-carbohydrate food. They should avoid fructose containing foods (as well as sucrose which breaks down to fructose).
As with all single-gene metabolic disorders, there is always hope for genetic therapy, inserting a healthy copy of the gene into existing liver cells.
The primary treatment method for fatty-acid metabolism disorders is dietary modification. It is essential that the blood-glucose levels remain at adequate levels to prevent the body from moving fat to the liver for energy. This involves snacking on low-fat, high-carbohydrate nutrients every 2–6 hours. However, some adults and children can sleep for 8–10 hours through the night without snacking.
Treatment for glycogen storage disease type III may involve a high-protein diet, in order to facilitate gluconeogenesis. Additionally the individual may need:
- IV glucose (if oral route is inadvisable)
- Nutritional specialist
- Vitamin D (for osteoporosis/secondary complication)
- Hepatic transplant (if complication occurs)
Carnitor - an L-carnitine supplement that has shown to improve the body's metabolism in individuals with low L-carnitine levels. It is only useful for Specific fatty-acid metabolism disease.
Once ketotic hypoglycemia is suspected and other conditions excluded, appropriate treatment reduces the frequency and duration of episodes. Extended fasts should be avoided. The child should be given a bedtime snack of carbohydrates (e.g. spaghetti or pasta or milk) and should be awakened and fed after the usual duration of sleep. If the child is underweight, a daily nutritional supplement may be recommended. Raw cornstarch dissolved in a beverage helps individuals with hypoglycemia, especially that caused by Glycogen Storage Disease, sustain their blood sugars for longer periods of time and may be given at bedtime.
If a spell begins, carbohydrates and fluids should be given promptly. If vomiting prevents this, the child should be taken to the local emergency department for a few hours of intravenous saline and dextrose. This treatment is often expedited by supplying the parents with a letter describing the condition and recommended treatment.
The first line treatment is change of lifestyle (e.g., Dietary Guidelines for Americans and physical activity). However, if in three to six months of efforts at remedying risk factors prove insufficient, then drug treatment is frequently required. Generally, the individual disorders that compose the metabolic syndrome are treated separately. Diuretics and ACE inhibitors may be used to treat hypertension. Cholesterol drugs may be used to lower LDL cholesterol and triglyceride levels, if they are elevated, and to raise HDL levels if they are low. Use of drugs that decrease insulin resistance, e.g., metformin and thiazolidinediones, is controversial; this treatment is not approved by the U.S. Food and Drug Administration. Weight loss medications may result in weight loss. As obesity is often recognized as the culprit behind many of the additional symptoms, with weight loss and lifestyle changes in diet, physical activity, the need for other medications may diminish.
A 2003 study indicated cardiovascular exercise was therapeutic in approximately 31% of cases. The most probable benefit was to triglyceride levels, with 43% showing improvement; but fasting plasma glucose and insulin resistance of 91% of test subjects did not improve.
Many other studies have supported the value of physical activity and dietary modifications to treat metabolic syndrome. Some natural compounds, like ursolic acid, have been suggested as a treatment for obesity/metabolic syndrome based on the results of extensive research involving animal models; it is argued, however, that there is still a lack of data regarding the use of ursolic acid in humans, as phase-II/III trials of that drug have not been carried so far.
Restricting the overall dietary carbohydrate intake is more effective in reducing the most common symptoms of metabolic syndrome than the more commonly prescribed reduction in dietary fat intake.
The combination preparation simvastatin/sitagliptin (marketed as Juvisync) was introduced in 2011 and the use of this drug was to lower LDL levels and as well as increase insulin levels. This drug could have been used to treat metabolic syndrome but was removed from the market by Merck in 2013 due to business reasons.
High-dose statins, recommended to reduce cardiovascular risk, have been associated with higher progression to diabetes, particularly in patients with metabolic syndrome. The biological mechanisms are not entirely understood, however, the plausible explanation may lie in competitive inhibition of glucose transport via the solute carrier (SLC) family of transporters (specifically "SLCO1B1"), important in statin pharmacokinetics.
Some studies on mice suggest that a Time Restricted Diet (TRD) could be helpful in reversing obesity and possibly metabolic syndrome
The only treatment for classic galactosemia is eliminating lactose and galactose from the diet. Even with an early diagnosis and a restricted diet, however, some individuals with galactosemia experience long-term complications such as speech difficulties, learning disabilities, neurological impairment (e.g. tremors, etc.), and ovarian failure. Symptoms have not been associated with Duarte galactosemia, and many individuals with Duarte galactosemia do not need to restrict their diet at all. However, research corroborates a previously overlooked theory that Duarte galactosemia may lead to language developmental issues in children with no clinical symptoms. Infants with classic galactosemia cannot be breast-fed due to lactose in human breast milk and are usually fed a soy-based formula.
Galactosemia is sometimes confused with lactose intolerance, but galactosemia is a more serious condition. Lactose intolerant individuals have an acquired or inherited shortage of the enzyme lactase, and experience abdominal pains after ingesting dairy products, but no long-term effects. In contrast, a galactosemic individual who consumes galactose can cause permanent damage to their bodies.
Long term complication of galactosemia includes:
- Speech deficits
- Ataxia
- Dysmetria
- Diminished bone density
- Premature ovarian failure
- Cataract
In the middle of the 20th century the principal treatment for some of the amino acid disorders was restriction of dietary protein and all other care was simply management of complications. In the past twenty years, enzyme replacement, gene therapy, and organ transplantation have become available and beneficial for many previously untreatable disorders. Some of the more common or promising therapies are listed:
A diet with carefully controlled levels of the amino acids leucine, isoleucine, and valine must be maintained at all times in order to prevent neurological damage. Since these three amino acids occur in all natural protein, and most natural foods contain some protein, any food intake must be closely monitored, and day-to-day protein intake calculated on a cumulative basis, to ensure individual tolerance levels are not exceeded at any time. As the MSUD diet is so protein-restricted, and adequate protein is a requirement for all humans, tailored metabolic formula containing all the other essential amino acids, as well as any vitamins, minerals, omega-3 fatty acids and trace elements (which may be lacking due to the limited range of permissible foods), are an essential aspect of MSUD management. These complement the MSUD patient's natural food intake to meet normal nutritional requirements without causing harm. If adequate calories cannot be obtained from natural food without exceeding protein tolerance, specialised low protein products such as starch-based baking mixtures, imitation rice and pasta may be prescribed, often alongside a protein-free carbohydrate powder added to food and/or drink, and increased at times of metabolic stress. Some patients with MSUD may also improve with administration of high doses of thiamine, a cofactor of the enzyme that causes the condition.
Diabetes can be treated but is life-threatening if left alone. Early diagnosis and treatment by a qualified veterinarian can help in preventing nerve damage, and, in rare cases, lead to remission. Cats do best with long-lasting insulin and low carbohydrate diets. Because diabetes is a disease of carbohydrate metabolism, a move to a primarily protein and fat diet reduces the occurrence of hyperglycemia.
Children "outgrow" ketotic hypoglycemia, presumably because fasting tolerance improves as body mass increases. In most the episodes become milder and more infrequent by 4 to 5 years of age and rarely occur after age 9. Onset of hypoglycemia with ketosis after age 5 or persistence after age 7 should elicit referral and an intensive search for a more specific disease.
Treatment is depended on the type of glycogen storage disease. E.g. GSD I is typically treated with frequent small meals of carbohydrates and cornstarch to prevent low blood sugar, while other treatments may include allopurinol and human granulocyte colony stimulating factor.
Oral medications like Glipizide that stimulate the pancreas, promoting insulin release (or in some cases, reduce glucose production), are less and less used in cats, and these drugs may be completely ineffective if the pancreas is not working. These drugs have also been shown in some studies to damage the pancreas further or to cause liver damage. Some owners are reluctant to switch from pills to insulin injections, but the fear is unjustified; the difference in cost and convenience is minor (most cats are easier to inject than to pill), and injections are more effective at treating the disease.
Some clinicians regard eliminating carbohydrates as unhealthy and dangerous. However, it is not necessary to eliminate carbohydrates from the diet completely to achieve ketosis. Other clinicians regard ketosis as a safe biochemical process that occurs during the fat-burning state. Ketosis, which is accompanied by gluconeogenesis (the creation of glucose de novo from pyruvate), is the specific state that concerns some clinicians. However, it is unlikely for a normally functioning person to reach life-threatening levels of ketosis, defined as serum beta-hydroxybutyrate (B-OHB) levels above 15 millimolar (mM) compared to ketogenic diets among non diabetics, which "rarely run serum B-OHB levels above 3 mM." This is avoided with proper basal secretion of pancreatic insulin. People who are unable to secrete basal insulin, such as type 1 diabetics and long-term type II diabetics, are liable to enter an unsafe level of ketosis, eventually resulting in a coma that requires emergency medical treatment. The anti-ketosis conclusions have been challenged by a number of doctors and advocates of low-carbohydrate diets, who dispute assertions that the body has a preference for glucose and that there are dangers associated with ketosis.
Keeping MSUD under control requires careful monitoring of blood chemistry, both at home and in a hospital setting. DNPH or specialised dipsticks may be used to test the patient's urine for ketones (a sign of metabolic decompensation), when metabolic stress is likely or suspected. Fingerstick tests are performed regularly and sent to a laboratory to determine blood levels of leucine, isoleucine, and valine. Regular metabolic consultations, including blood-draws for full nutritional analysis, are recommended; especially during puberty and periods of rapid growth. MSUD management also involves a specially tailored metabolic formula, a modified diet, and lifestyle precautions such as avoiding fatigue and infections, as well as consuming regular, sufficient calories in proportion to physical stress and exertion. Without sufficient calories, catabolism of muscle protein will result in metabolic crisis. Those with MSUD must be hospitalised for intravenous infusion of sugars and nasogastric drip-feeding of formula, in the event of metabolic decompensation, or anorexia, diarrhea or vomiting. Food avoidance, rejection of formula and picky eating are all common problems with MSUD. Some patients may need to receive all or part of their daily nutrition through a feeding tube.
Treatments for Glycerol Kinase Deficiency are targeted to treat the symptoms because there are no permanent treatments for this disease. The main way to treat these symptoms is by using corticosteroids, glucose infusion, or mineralocorticoids. Corticosteroids are steroid hormones that are naturally produced in the adrenal glands. These hormones regulate stress responses, carbohydrate metabolism, blood electrolyte levels, as well as other uses. The mineralocorticoids, such as aldosterone control many electrolyte levels and allow the kidneys to retain sodium. Glucose infusion is coupled with insulin infusion to monitor blood glucose levels and keep them stable.
Due to the multitude of varying symptoms of this disease, there is no specific treatment that will cure this disease altogether. The symptoms can be treated with many different treatments and combinations of medicines to try to find the correct combination to offset the specific symptoms. Everyone with Glycerol Kinase Deficiency has varying degrees of symptoms and thereby requires different medicines to be used in combination to treat the symptoms; however, this disease is not curable and the symptoms can only be managed, not treated fully.
Treatment of some forms of hypoglycemia, such as in diabetes, involves immediately raising the blood sugar to normal through the ingestion of carbohydrates, determining the cause, and taking measures to hopefully prevent future episodes. However, this treatment is not optimal in other forms such as reactive hypoglycemia, where rapid carbohydrate ingestion may lead to a further hypoglycemic episode.
Blood glucose can be raised to normal within minutes by taking (or receiving) 10–20 grams of carbohydrate. It can be taken as food or drink if the person is conscious and able to swallow. This amount of carbohydrate is contained in about 3–4 ounces (100–120 ml) of orange, apple, or grape juice although fruit juices contain a higher proportion of fructose which is more slowly metabolized than pure dextrose, alternatively, about 4–5 ounces (120–150 ml) of regular (non-diet) soda may also work, as will about one slice of bread, about 4 crackers, or about 1 serving of most starchy foods. Starch is quickly digested to glucose (unless the person is taking acarbose), but adding fat or protein retards digestion. Symptoms should begin to improve within 5 minutes, though full recovery may take 10–20 minutes. Overfeeding does not speed recovery and if the person has diabetes will simply produce hyperglycemia afterwards. A mnemonic used by the American Diabetes Association and others is the "rule of 15" – consuming 15 grams of carbohydrate followed by a 15-minute wait, repeated if glucose remains low (variable by individual, sometimes 70 mg/dl).
If a person is suffering such severe effects of hypoglycemia that they cannot (due to combativeness) or should not (due to seizures or unconsciousness) be given anything by mouth, medical personnel such as paramedics, or in-hospital personnel can establish IV access and give intravenous dextrose, concentrations varying depending on age (infants are given 2 ml/kg dextrose 10%, children are given dextrose 25%, and adults are given dextrose 50%). Care must be taken in giving these solutions because they can cause skin necrosis if the IV is infiltrated, sclerosis of veins, and many other fluid and electrolyte disturbances if administered incorrectly. If IV access cannot be established, the patient can be given 1 to 2 milligrams of glucagon in an intramuscular injection. More treatment information can be found in the article diabetic hypoglycemia. If a person is suffering less severe effects, and is conscious with the ability to swallow, medical personal such as EMT-B's may administer gelatinous oral glucose.
One situation where starch may be less effective than glucose or sucrose is when a person is taking acarbose. Since acarbose and other alpha-glucosidase inhibitors prevents starch and other sugars from being broken down into monosaccharides that can be absorbed by the body, patients taking these medications should consume monosaccharide-containing foods such as glucose tablets, honey, or juice to reverse hypoglycemia.
Treatment of hyperglycemia requires elimination of the underlying cause, such as diabetes. Acute hyperglycemia can be treated by direct administration of insulin in most cases. Severe hyperglycemia can be treated with oral hypoglycemic therapy and lifestyle modification.
In diabetes mellitus (by far the most common cause of chronic hyperglycemia), treatment aims at maintaining blood glucose at a level as close to normal as possible, in order to avoid these serious long-term complications. This is done by a combination of proper diet, regular exercise, and insulin or other medication such as metformin, etc.
Those with hyperglycaemia can be treated using sulphonylureas or metformin or both. These drugs help by improving glycaemic control
Dipeptidyl peptidase 4 inhibitor alone or in combination with basal insulin can be used as a treatment for hyperglycemia with patients still in the hospital.
The most effective means of preventing further episodes of hypoglycemia depends on the cause.
The risk of further episodes of diabetic hypoglycemia can often (but not always) be reduced by lowering the dose of insulin or other medications, or by more meticulous attention to blood sugar balance during unusual hours, higher levels of exercise, or decreasing alcohol intake.
Many of the inborn errors of metabolism require avoidance or shortening of fasting intervals, or extra carbohydrates. For the more severe disorders, such as type 1 glycogen storage disease, this may be supplied in the form of cornstarch every few hours or by continuous gastric infusion.
Several treatments are used for hyperinsulinemic hypoglycemia, depending on the exact form and severity. Some forms of congenital hyperinsulinism respond to diazoxide or octreotide. Surgical removal of the overactive part of the pancreas is curative with minimal risk when hyperinsulinism is focal or due to a benign insulin-producing tumor of the pancreas. When congenital hyperinsulinism is diffuse and refractory to medications, near-total pancreatectomy may be the treatment of last resort, but in this condition is less consistently effective and fraught with more complications.
Hypoglycemia due to hormone deficiencies such as hypopituitarism or adrenal insufficiency usually ceases when the appropriate hormone is replaced.
Hypoglycemia due to dumping syndrome and other post-surgical conditions is best dealt with by altering diet. Including fat and protein with carbohydrates may slow digestion and reduce early insulin secretion. Some forms of this respond to treatment with a glucosidase inhibitor, which slows starch digestion.
Reactive hypoglycemia with demonstrably low blood glucose levels is most often a predictable nuisance which can be avoided by consuming fat and protein with carbohydrates, by adding morning or afternoon snacks, and reducing alcohol intake.
Idiopathic postprandial syndrome without demonstrably low glucose levels at the time of symptoms can be more of a management challenge. Many people find improvement by changing eating patterns (smaller meals, avoiding excessive sugar, mixed meals rather than carbohydrates by themselves), reducing intake of stimulants such as caffeine, or by making lifestyle changes to reduce stress. See the following section of this article.
To relieve reactive hypoglycemia, the NIH recommends taking the following steps:
- Avoiding or limiting sugar intake;
- Exercising regularly; exercise increases sugar uptake which decreases excessive insulin release
- Eating a variety of foods, including meat, poultry, fish, or nonmeat sources of protein, foods such as whole-grains, fruits, nuts, vegetables, and dairy products;
- Choosing high-fiber foods.
Other tips to prevent sugar crashes include:
- Avoiding eating meals or snacks composed entirely of carbohydrates; simultaneously ingest fats and proteins, which have slower rates of absorption.
- Consistently choosing longer lasting, complex carbohydrates to prevent rapid blood-sugar dips in the event that one does consume a disproportionately large amount of carbohydrates with a meal
- Monitoring any effects medication may have on symptoms.
Low-carbohydrate diet and/or frequent small split meals is the first treatment of this condition. The first important point is to add small meals at the middle of the morning and of the afternoon, when glycemia would start to decrease. If adequate composition of the meal is found, the fall in blood glucose is thus prevented. Patients should avoid rapidly absorbable sugars and thus avoid popular soft drinks rich in glucose or sucrose. They should also be cautious with drinks associating sugar and alcohol, mainly in the fasting state.
As it is a short-term ailment, a sugar crash does not usually require medical intervention in most people. The most important factors to consider when addressing this issue are the composition and timing of foods.
Acute low blood sugar symptoms are best treated by consuming small amounts of sweet foods, so as to regain balance in the body’s carbohydrate metabolism. Suggestions include sugary foods that are quickly digested, such as:
- Dried fruit
- Soft drinks
- Juice
- Sugar as sweets, tablets or cubes.
It is important for MADD patients to maintain strength and fitness without exercising or working to exhaustion. Learning this balance may be more difficult than normally, as muscle pain and fatigue may be perceived differently from normal individuals.
Symptomatic relief from the effects of MADD may sometimes be achieved by administering ribose orally at a dose of approximately 10 grams per 100 pounds (0.2 g/kg) of body weight per day, and exercise modulation as appropriate. Taken hourly, ribose provides a direct but limited source of energy for the cells. Patients with myoadenylate deaminase deficiency do not retain ribose during heavy exercise, so supplementation may be required to rebuild levels of ATP.
Creatine monohydrate could also be helpful for AMPD patients, as it provides an alternative source of energy for anaerobic muscle tissue and was found to be helpful in the treatment of other, unrelated muscular myopathies.
Galactose is converted into glucose by the action of three enzymes, known as the Leloir pathway. There are diseases associated with deficiencies of each of these three enzymes: