Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Currently, no cure exists for canine leishmaniasis, but various treatment options are available in different countries. Treatment is best coordinated with veterinary research hospitals. Treatment does vary by geographic area, strain of infection and exhibited symptoms. Dogs can be asymptomatic for years. Most common treatments include:
"L. donovani"
- Antimonial resistant
- Polyene antibiotic amphotericin B
"L. infantum"
- Amphotericin B
- Meglumine antimoniate
- Pentavalent antimonials
- Miltefosine
- Allopurinol
There have been no documented cases of leishmaniasis transmission from dogs to humans.
As with many diseases in developing nations, (including trypanosomiasis and malaria) effective and affordable chemotherapy is sorely lacking and parasites or insect vectors are becoming increasingly resistant to existing anti-parasite drugs. Possibly due to the lack of financial return, new drugs are slow to emerge and much of the basic research into potential drug targets takes place in universities, funded by charitable organizations. Product Development Partnerships (PDPs) like Drugs for Neglected Diseases "initiatives" also work on the development of new treatments (combination treatments and new chemical entities) for visceral leishmaniasis.
The traditional treatment is with pentavalent antimonials such as sodium stibogluconate and meglumine antimoniate. Resistance is now common in India, and rates of resistance have been shown to be as high as 60% in parts of Bihar, India.
The treatment of choice for visceral leishmaniasis acquired in India is now Amphotericin B in its various liposomal preparations. In East Africa, the WHO recommended treatment is SSG&PM (sodium stibogluconate and paromomycin) developed by Drugs for Neglected Diseases "initiative" (DNDi)in 2010.
Miltefosine is the first oral treatment for this disease. The cure rate of miltefosine in Phase III clinical trials is 95%; Studies in Ethiopia show that is also effective in Africa. In HIV immunosuppressed people which are coinfected with leishmaniasis it has shown that even in resistant cases 2/3 of the people responded to this new treatment.
Miltefosine has received approval by the Indian regulatory authorities in 2002, in Germany in 2004 and in U.S.A. in 2014. It is now registered in many countries.
The drug is generally better tolerated than other drugs. Main side effects are gastrointestinal disturbance in the first or second day of treatment (a course of treatment is 28 days) which does not affect the efficacy. Because it is available as an oral formulation, the expense and inconvenience of hospitalization is avoided, and outpatient distribution of the drug becomes an option, making Miltefosine a drug of choice.
Incomplete treatment has been cited as a major reason of death from visceral leishmaniasis.
The nonprofit Institute for OneWorld Health has adopted the broad spectrum antibiotic paromomycin for use in treating VL; its antileishmanial properties were first identified in the 1980s. A treatment with paromomycin costs about $15 USD. The drug had originally been identified in the 1960s. The Indian government approved paromomycin for sale and use in August 2006.
The treatment is determined by where the disease is acquired, the species of "Leishmania", and the type of infection.
For visceral leishmaniasis in India, South America, and the Mediterranean, liposomal amphotericin B is the recommended treatment and is often used as a single dose. Rates of cure with a single dose of amphotericin have been reported as 95%. In India, almost all infections are resistant to pentavalent antimonials. In Africa, a combination of pentavalent antimonials and paromomycin is recommended. These, however, can have significant side effects. Miltefosine, an oral medication, is effective against both visceral and cutaneous leishmaniasis. Side effects are generally mild, though it can cause birth defects if taken within 3 months of getting pregnant. It does not appear to work for "L. major" or "L. braziliensis".
The evidence around the treatment of cutaneous leishmaniasis is poor. A number of topical treatments may be used for cutaneous leishmaniasis. Which treatments are effective depends on the strain, with topical paromomycin effective for "L. major", "L. tropica", "L. mexicana", "L. panamensis", and "L. braziliensis". Pentamidine is effective for "L. guyanensis". Oral fluconazole or itraconazole appears effective in "L. major" and "L. tropica".
In areas where the known vector is a sandfly, deltamethrin collars worn by the dogs has been proven to be 86% effective. The sandfly is most active at dusk and dawn; keeping dogs indoors during those peak times will help minimize exposure.
Unfortunately, there is no one answer for leishmaniasis prevention, nor will one vaccine cover multiple species. "Different virulence factors have been identified for distinct "Leishmania" species, and there are profound differences in the immune mechanisms that mediate susceptibility/resistance to infection and in the pathology associated with disease."
In 2003, Fort Dodge Wyeth released the Leshmune vaccine in Brazil for "L. donovani" (also referred to as "kala-azar" in Brazil). Studies indicated up to 87% protection. Most common side effects from the vaccine have been noted as anorexia and local swelling.
The president of the Brazil Regional Council of Veterinary Medicine, Marcia Villa, warned since vaccinated dogs develop antibodies, they can be difficult to distinguish from asymptomatic, infected dogs.
Studies also indicate the Leshmune vaccine may be reliable in treating "L. chagasi", and a possible treatment for dogs already infected with "L. donovani".
The best treatment for cutaneous leishmaniasis is not known. Treatments that work for one species of leishmania may not work for another; it is recommended that advice of a tropical medicine or geographical medicine specialist be sought. Ideally, every effort should be made to establish the species of leishmania by molecular techniques (PCR) prior to starting treatment. In the setting of a developing country, there is often only one species present in a particular locality, so it is usually unnecessary to speciate every infection. Unfortunately, leishmaniasis is an orphan disease in developed nations, and almost all the current treatment options are toxic with significant side effects. The most sound treatment for cutaneous leishmaniasis thus far is prevention.
- "Leishmania major" :"L. major" infections are usually considered to heal spontaneously and do not require treatment, but there have been several reports of severe cases caused by "L. major" in Afghanistan. In Saudi Arabia, a six-week course of oral fluconazole 200 mg daily has been reported to speed up healing. In a randomized clinical trial from Iran, fluconazole 400 mg daily was shown to be significantly more effective than fluconazole 200 mg daily in the treatment of cutaneous leishmaniasis.
- "Leishmania braziliensis" :Treatment with pentavalent antimonials or amphotericin is necessary, because of the risk of developing disfiguring mucocutaneous lesions.
- "Leishmania infantum" :"L. infantum" causes cutaneous leishmaniasis in southern France.
New treatment options are arising from the new oral drug miltefosine (Impavido) which has shown in several clinical trials to be very efficient and safe in visceral and cutaneous leishmaniasis. Recent studies from Bolivia show a high cure rate for mucocutaneous leishmaniasis. Comparative studies against pentavalent antimonials in Iran and Pakistan are also beginning to show a high cure rate for "L. major" and "L. tropica". It is registered in many countries of Latin America, as well in Germany. In October 2006 it received orphan drug status from the US Food and Drug administration. The drug is generally better tolerated than other drugs. Main side effects are gastrointestinal disturbances in the 1–2 days of treatment which does not affect the efficacy.
Secondary bacterial infection (especially with "Staphylococcus aureus") is common and may require antibiotics. Clinicians who are unfamiliar with cutaneous leishmaniasis may mistake the lesion for a pure bacterial infection (especially after isolation of "S. aureus" from bacterial skin swabs) and fail to consider the possibility of leishmaniasis.
There are no vaccines or preventive drugs for visceral leishmaniasis. The most effective method to prevent infection is to protect from sand fly bites. To decrease the risk of being bitten, these precautionary measures are suggested:
- Outdoors:
1. Avoid outdoor activities, especially from dusk to dawn, when sand flies generally are the most active.
2. When outdoors (or in unprotected quarters), minimize the amount of exposed (uncovered) skin to the extent that is tolerable in the climate. Wear long-sleeved shirts, long pants, and socks; and tuck your shirt into your pants.
3. Apply insect repellent to exposed skin and under the ends of sleeves and pant legs. Follow the instructions on the label of the repellent. The most effective repellents generally are those that contain the chemical DEET (N,N-diethylmetatoluamide).
- Indoors:
1. Stay in well-screened or air-conditioned areas.
2. Keep in mind that sand flies are much smaller than mosquitoes and therefore can get through smaller holes.
3. Spray living/sleeping areas with an insecticide to kill insects.
4. If you are not sleeping in a well-screened or air-conditioned area, use a bed net and tuck it under your mattress. If possible, use a bed net that has been soaked in or sprayed with a pyrethroid-containing insecticide. The same treatment can be applied to screens, curtains, sheets, and clothing (clothing should be retreated after five washings)."
On February 2012, the nonprofit Infectious Disease Research Institute launched a clinical trial of the visceral leishmaniasis vaccine. The vaccine is a recombinant form of two fused Leishmania parasite proteins with an adjuvant. Two phase 1 clinical trials with healthy volunteers are to be conducted. The first one takes place in Washington (state) and is followed by a trial in India.
Supportive care must be provided to animals that have clinical signs. Subcutaneous or intravenous fluids are given to dehydrated animals, and severely anemic dogs may require a blood transfusion. Treatment for ehrlichiosis involves the use of antibiotics such as tetracycline or doxycycline for a period of at least six to eight weeks; response to the drugs may take one month. Treatment with macrolide antibiotics like clarithromycin and azithromycin is being studied. In addition, steroids may be indicated in severe cases in which the level of platelets is so low that the condition is life-threatening.
Tick control is the most effective method of prevention, but tetracycline at a lower dose can be given daily for 200 days during the tick season in endemic regions.
Doxycycline and minocycline are the medications of choice. For people allergic to antibiotics of the tetracycline class, rifampin is an alternative. Early clinical experience suggested that chloramphenicol may also be effective, however, in vitro susceptibility testing revealed resistance.
Mucocutaneous leishmaniasis is an especially disturbing form of cutaneous leishmaniasis, because it produces destructive and disfiguring lesions of the face. It is most often caused by "Leishmania braziliensis", but cases caused by "L. aethiopica" have also been described.
Mucocutaneous leishmaniasis is very difficult to treat. Treatment involves the use of pentavalent antimonial compounds, which are highly toxic (common side effects include thrombophlebitis, pancreatitis, cardiotoxicity and hepatotoxicity) and not very effective. For example, in one study, despite treatment with high doses of sodium stibogluconate for 28 days, only 30% of patients remained disease-free at 12 months follow-up. Even in those patients who achieve an apparent cure, as many as 19% will relapse. Several drug combinations with immunomodulators have been tested, for example, a combination of pentoxifylline (inhibitor of TNF-α) and a pentavalent antimonial at a high dose for 30 days in a small-scale (23 patients) randomised placebo-controlled study from Brazil achieved cure rates of 90% and reduced time to cure, a result that should be interpreted cautiously in light of inherent limitations of small-scale studies. In an earlier small-scale (12 patients) study, addition of imiquimod showed promising results which need yet to be confirmed in larger trials.
The most common medications used to treat coccidian infections are in the sulfonamide antibiotic family.
Depending on the pathogen and the condition of the animal, untreated coccidiosis may clear of its own accord, or become severe and damaging, and sometimes cause death.
Sulfonamides are the traditional remedies to paracoccidiodomycosis. They were introduced by Oliveira Ribeiro and used for more than 50 years with good results. The most-used sulfa drugs in this infection are sulfadimethoxime, sulfadiazine, and co-trimoxazole. This treatment is generally safe, but several adverse effects can appear, the most severe of which are the Stevens-Johnson syndrome and agranulocytosis. Similarly to tuberculosis treatment, it must be continued for up to three years to eradicate the fungus, and relapse and treatment failures are not unusual.
Antifungal drugs such as amphotericin B or itraconazole and ketoconazole are more effective in clearing the infection, but are limited by their cost when compared with sulfonamides.During therapy, fibrosis can appear and surgery may be needed to correct this. Another possible complication is Addisonian crisis. The mortality rate in children is around 7-10%.
There is no specific treatment for the canine distemper. As with measles, the treatment is symptomatic and supportive. The supportive care is geared towards treating fluid/electrolyte imbalances, neurological symptoms, and preventing any secondary bacterial infections. Examples include administering fluids, electrolyte solutions, analgesics, anticonvulsants, broad spectrum antibiotics, antipyretics, parenteral nutrition and nursing care.
Affected dogs need to be isolated from other dogs and their bedding, and places they have occupied must be thoroughly cleaned. Other dogs in contact with a diagnosed case should be evaluated and treated. A number of parasitical treatments are useful in treating canine scabies. Sulfurated lime (a mixture of calcium polysulfides) rinses applied weekly or biweekly are effective (the concentrated form for use on plants as a fungicide must be diluted 1:16 or 1:32 for use on animal skin).
Selamectin is licensed for treatment in dogs by veterinary prescription in several countries; it is applied as a dose directly to the skin, once per month (the drug does not wash off). A related and older drug ivermectin is also effective and can be given by mouth for two to four weekly treatments or until two negative skin scrapings are achieved. Oral ivermectin is not safe to use on some collie-like herding dogs, however, due to possible homozygous MDR1 (P-glycoprotein) mutations that increase its toxicity by allowing it into the brain. Ivermectin injections are also effective and given in either weekly or every two weeks in one to four doses, although the same MDR1 dog restrictions apply.
Affected cats can be treated with fipronil and milbemycin oxime.
Topical 0.01% ivermectin in oil (Acarexx) has been reported to be effective in humans, and all mite infections in many types of animals (especially in ear mite infections where the animal cannot lick the treated area), and is so poorly absorbed that systemic toxicity is less likely in these sites. Nevertheless, topical ivermectin has not been well enough tested to be approved for this use in dogs, and is theoretically much more dangerous in zones where the animal can potentially lick the treated area. Selamectin applied to the skin (topically) has some of the same theoretical problems in collies and MDR1 dogs as ivermectin, but it has nevertheless been approved for use for all dogs provided that the animal can be observed for 8 hours after the first monthly treatment. Topical permethrin is also effective in both dogs and humans, but is toxic to cats.
Afoxolaner (oral treatment with a chewable tablet containing afoxolaner 2.27% w/w) has been shown to be efficient against both sarcoptic and demodectic mange in dogs.
Sarcoptic mange is transmissible to humans who come into prolonged contact with infested animals, and is distinguished from human scabies by its distribution on skin surfaces covered by clothing. For treatment of sarcoptic infection in humans, see scabies. For demodetic infection in humans, which is not as severe as it is in animals with thicker coats (such as dogs), see "Demodex folliculorum".
No human vaccine is available for ehrlichiosis. Tick control is the main preventive measure against the disease. However, in late 2012 a breakthrough in the prevention of CME (canine monocytic ehrlichiosis) was announced when a vaccine was accidentally discovered by Prof. Shimon Harrus, Dean of the Hebrew University of Jerusalem's Koret School of Veterinary Medicine.
Puppies are frequently infected with coccidia from the feces of their mother, and are more likely to develop coccidiosis due to their undeveloped immune systems. Stress can trigger symptoms in susceptible animals.
Symptoms in young dogs include diarrhea with mucus and blood, poor appetite, vomiting, and dehydration. Untreated the disease can be fatal.
Treatment is routine and effective. Diagnosis is made by low-powered microscopic examination of the feces, which is generally replete with oocysts. Readily available drugs eliminate the protozoa or reduce them enough that the animal's immune system can clear the infection. Permanent damage to the gastrointestinal system is rare, and a dog will usually suffer no long-lasting negative effects.
In Haiti, few cases of human rabies are reported to health authorities. In 2016, a report of a woman who had been exposed to rabies three months prior and was showing symptoms went to the hospital where no treatment was administered to her. Even after being reported to both the CDC and the national Department of Epidemiology and Laboratory Research (DELR), as required by Haiti's surveillance program, the woman ended up passing away. This goes to show the lack of communication and effectiveness in caring for human subjects in Haiti, and the continued focus is on eliminating dog-mediated rabies altogether.
Human diploid cell culture rabies vaccine (HDCV) and purified chick embryo cell culture rabies vaccine (PCEC) are used to treat post-exposure immunization against a human rabies infection. Recommendations for treatment are given by governmental health care organizations and in health literature. Health care providers are encouraged to administer a regimen of four 1-mL doses of HDCV or PCEC vaccines. According to the CDC, these injections should be administered intramuscularly to persons who have not yet been vaccinated for rabies.
For those who are unvaccinated, the first of four doses is administered immediately after exposure to the rabies virus. Additional doses are given three, seven, and fourteen days after the first vaccination. Exposure usually means a bite from a rabid animal.
At an individual patient level, post-exposure prophylaxis (PEP) consists of local treatment of the wound, vaccination, and administration of immunoglobulin, if necessary [3]. At the program level, several components are critical, including: adequate and prompt recognition of the need for PEP by the public, if exposed, and by health officials, prompt and sufficient availability of high-quality PEP, and adequate follow-up of PEP use. Health officials' awareness of the need for PEP after a dog bite can only be achieved if the exposure is attended to immediately and communicated effectively.
Biotechnology companies in the developing world have targeted neglected tropical diseases due to need to improve global health.
Mass drug administration is considered a possible method for eradication, especially for lymphatic filariasis, onchocerciasis, and trachoma, although drug resistance is a potential problem. According to Fenwick, Pfizer donated 70 million doses of drugs in 2011 to eliminate trachoma through the International Trachoma Initiative. Merck has helped The African Programme for the Control of Onchocerciasis (APOC) and Oncho Elimination Programme for the Americas to greatly diminished the effect of Onchocerciasis by donating ivermectin. Merck KGaA pledged to give 200 million tablets of praziquantel over 10 years, the only cure for schistosomiasis. GlaxoSmithKline has donated two billion tablets of medicine for lymphatic filariasis and pledged 400 million deworming tablets per year for five years in 2010. Johnson & Johnson has pledged 200 million deworming tablets per year. Novartis has pledged leprosy treatment, EISAI pledged two billion tablets to help treat lymphatic filariasis.
There are currently only two donor-funded non-governmental organizations that focus exclusively on NTDs: the Schistosomiasis Control Initiative and Deworm the World. Despite under-funding, many neglected diseases are cost-effective to treat and prevent. The cost of treating a child for infection of soil transmitted helminths and schistosomes (some of the main causes of neglected diseases), is less than US$0.50 per year, when administered as part of school-based mass deworming by Deworm the World. This programme is recommended by Giving What We Can and the Copenhagen Consensus Centre as one of the most efficient and cost-effective solutions. The efforts of Schistosomiasis Control Initiative to combat neglected diseases include the use of rapid-impact packages: supplying schools with packages including four or five drugs, and training teachers in how to administer them.
A canine vector-borne disease (CVBD) is one of "a group of globally distributed and rapidly spreading illnesses that are caused by a range of pathogens transmitted by arthropods including ticks, fleas, mosquitoes and phlebotomine sandflies." CVBDs are important in the fields of veterinary medicine, animal welfare, and public health. Some CVBDs are of zoonotic concern.
Many CVBD infect humans as well as companion animals. Some CVBD are fatal; most can only be controlled, not cured. Therefore, infection should be avoided by preventing arthropod vectors from feeding on the blood of their preferred hosts. While it is well known that arthropods transmit bacteria and protozoa during blood feeds, viruses are also becoming recognized as another group of transmitted pathogens of both animals and humans.
Some "canine vector-borne pathogens of major zoonotic concern" are distributed worldwide, while others are localized by continent. Listed by vector, some such pathogens and their associated diseases are the following:
- Phlebotomine sandflies (Psychodidae): "Leishmania amazonensis", "L. colombiensis", and "L. infantum" cause visceral leishmaniasis (see also canine leishmaniasis). "L. braziliensis" causes mucocutaneous leishmaniasis. "L. tropica" causes cutaneous leishmaniasis. "L. peruviana" and "L. major" cause localized cutaneous leishmaniasis.
- Triatomine bugs (Reduviidae): "Trypanosoma cruzi" causes trypanosomiasis (Chagas disease).
- Ticks (Ixodidae): "Babesia canis" subspecies ("Babesia canis canis", "B. canis vogeli", "B. canis rossi", and "B. canis gibsoni" cause babesiosis. "Ehrlichia canis" and "E. chaffeensis" cause monocytic ehrlichiosis. "Anaplasma phagocytophilum" causes granulocytic anaplasmosis. "Borrelia burgdorferi" causes Lyme disease. "Rickettsia rickettsii" causes Rocky Mountain spotted fever. "Rickettsia conorii" causes Mediterranean spotted fever.
- Mosquitoes (Culicidae): "Dirofilaria immitis" and "D. repens" cause dirofilariasis.
Leishmaniasis is a disease caused by parasites of the "Leishmania" type. It is spread by the bite of certain types of sandflies. The disease can present in three main ways: cutaneous, mucocutaneous, or visceral leishmaniasis. The cutaneous form presents with skin ulcers, while the mucocutaneous form presents with ulcers of the skin, mouth, and nose, and the visceral form starts with skin ulcers and then later presents with fever, low red blood cells, and enlarged spleen and liver.
Infections in humans are caused by more than 20 species of "Leishmania". Risk factors include poverty, malnutrition, deforestation, and urbanization. All three types can be diagnosed by seeing the parasites under the microscope. Additionally, visceral disease can be diagnosed by blood tests.
Leishmaniasis can be partly prevented by sleeping under nets treated with insecticide. Other measures include spraying insecticides to kill sandflies and treating people with the disease early to prevent further spread. The treatment needed is determined by where the disease is acquired, the species of "Leishmania", and the type of infection. Some possible medications used for visceral disease include liposomal amphotericin B, a combination of pentavalent antimonials and paromomycin, and miltefosine. For cutaneous disease, paromomycin, fluconazole, or pentamidine may be effective.
About 4 to 12 million people are currently infected in some 98 countries. About 2 million new cases and between 20 and 50 thousand deaths occur each year. About 200 million people in Asia, Africa, South and Central America, and southern Europe live in areas where the disease is common. The World Health Organization has obtained discounts on some medications to treat the disease. It is classified as a neglected tropical disease. The disease may occur in a number of other animals, including dogs and rodents.
Localized demodectic mange is considered a common puppyhood ailment, with roughly 90% of cases resolving on their own with no treatment. Minor, localized cases should be left to resolve on their own to prevent masking of the more severe generalized form. If treatment is deemed necessary Goodwinol, a rotenone-based insecticide ointment is often prescribed, but it can be irritating to the skin. Demodectic mange with secondary infection is treated with antibiotics and medicated shampoos.
In more severe generalized cases, Amitraz is a parasiticidal dip that is licensed for use in many countries (the only FDA approved treatment in the USA) for treating canine demodicosis. It is applied weekly or biweekly, for several weeks, until no mites can be detected by skin scrapings. Demodectic mange in dogs can also be managed with avermectins, although there are few countries which license these drugs, which are given by mouth, daily, for this use. Ivermectin is used most frequently; collie-like herding breeds often do not tolerate this drug due to a defect in the blood–brain barrier, though not all of them have this defect. Other avermectin drugs that can be used include doramectin and milbemycin.
Recent results suggest that the isoxazolines afoxolaner and fluralaner, given orally, are effective in treating dogs with generalised demodicosis.
Cats with "Demodex gatoi" must be treated with weekly or bi-weekly sulfurated lime rinses. "Demodex cati" are treated similarly to canine demodicosis. With veterinary guidance, localized demodectic mange can also be treated with a topical keratolytic and antibacterial agent, followed by a lime sulfur drip or a local application of Rotenone. Ivermectin may also be used. Generalized demodectic mange in cats is more difficult to treat. There are shampoos available that can help to clear dead skin, kill mites and treat bacterial infections. Treatment is in most cases prolonged with multiple applications.
Because of the possibility of the immune deficiency being an inherited trait, many veterinarians believe that all puppies with generalized demodex should be spayed or neutered and not reproduce. Females with generalized demodex should be spayed because the stress of the estrus cycle will often bring on a fresh wave of clinical signs.
An anthroponotic disease, or anthroponosis, is an infectious disease in which a disease causing agent carried by humans is transferred to other animals. It may cause the same disease or a different disease in other animals. Since humans do not generally inflict bite wounds on other animals, the method of transmissions is always a "soft" contact such as skin to skin transmission. An example is chytridiomycosis which can be spread by humans with the fungus on their skin handling frogs with bare hands.
The reverse situation, a disease transmitted from animals to humans, is known as zoonotic.
It can also be defined as a human-to-human infection with no animal vector.
A robovirus is a zoonotic virus that is transmitted by a rodent vector (i.e., "ro"dent "bo"rne).
Roboviruses mainly belong to the Arenaviridae and Hantaviridae family of viruses. Like arbovirus ("ar"thropod "bo"rne) and tibovirus ("ti"ck "bo"rne) the name refers to its method of transmission, known as its vector. This is distinguished from a clade, which groups around a common ancestor. Some scientists now refer to arbovirus and robovirus together with the term ArboRobo-virus.
Many human diseases can be transmitted to other primates, due to their extensive biological similarities. As a result, centers that hold, treat, or involve close proximity to primates and some other kinds of animals (for example zoos, researchers, and animal hospitals), often take steps to ensure animals are not exposed to human diseases they can catch. In some cases animals are routinely immunized with the same vaccines given to humans.
- Leishmaniasis - Both zoonotic and anthroponotic.
- Influenza, Measles, pneumonia and various other pathogens - Many primates.
- Tuberculosis - Both zoonotic and anthroponotic, with birds, cows, elephants, meerkats, mongooses, monkeys, and pigs known to have been affected.