Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment is dependent on type of cancer, location of the cancer, age of the person, and whether the cancer is primary or a recurrence. Treatment is also determined by the specific type of cancer. For a small basal-cell cancer in a young person, the treatment with the best cure rate (Mohs surgery or CCPDMA) might be indicated. In the case of an elderly frail man with multiple complicating medical problems, a difficult to excise basal-cell cancer of the nose might warrant radiation therapy (slightly lower cure rate) or no treatment at all. Topical chemotherapy might be indicated for large superficial basal-cell carcinoma for good cosmetic outcome, whereas it might be inadequate for invasive nodular basal-cell carcinoma or invasive squamous-cell carcinoma.. In general, melanoma is poorly responsive to radiation or chemotherapy.
For low-risk disease, radiation therapy (external beam radiotherapy or brachytherapy), topical chemotherapy (imiquimod or 5-fluorouracil) and cryotherapy (freezing the cancer off) can provide adequate control of the disease; all of them, however, may have lower overall cure rates than certain type of surgery. Other modalities of treatment such as photodynamic therapy, topical chemotherapy, electrodesiccation and curettage can be found in the discussions of basal-cell carcinoma and squamous-cell carcinoma.
Mohs' micrographic surgery (Mohs surgery) is a technique used to remove the cancer with the least amount of surrounding tissue and the edges are checked immediately to see if tumor is found. This provides the opportunity to remove the least amount of tissue and provide the best cosmetically favorable results. This is especially important for areas where excess skin is limited, such as the face. Cure rates are equivalent to wide excision. Special training is required to perform this technique. An alternative method is CCPDMA and can be performed by a pathologist not familiar with Mohs surgery.
In the case of disease that has spread (metastasized), further surgical procedures or chemotherapy may be required.
Treatments for metastatic melanoma include biologic immunotherapy agents ipilimumab, pembrolizumab, and nivolumab; BRAF inhibitors, such as vemurafenib and dabrafenib; and a MEK inhibitor trametinib.
Appropriate sun-protective clothing, use of broad-spectrum (UVA/UVB) sunscreen with at least SPF 50, and avoidance of intense sun exposure may prevent skin cancer.
Most squamous cell carcinomas are removed with surgery. A few selected cases are treated with topical medication. Surgical excision with a free margin of healthy tissue is a frequent treatment modality. Radiotherapy, given as external beam radiotherapy or as brachytherapy (internal radiotherapy), can also be used to treat squamous cell carcinomas.
Mohs surgery is frequently utilized; considered the treatment of choice for squamous cell carcinoma of the skin, physicians have also utilized the method for the treatment of squamous cell carcinoma of the mouth, throat, and neck. An equivalent method of the CCPDMA standards can be utilized by a pathologist in the absence of a Mohs-trained physician. Radiation therapy is often used afterward in high risk cancer or patient types.
Electrodessication and curettage or EDC can be done on selected squamous cell carcinoma of the skin. In areas where SCC's are known to be non-aggressive, and where the patient is not immunosuppressed, EDC can be performed with good to adequate cure rate.
High-risk squamous cell carcinoma, as defined by those occurring around the eye, ear, or nose, is of large size, is poorly differentiated, and grows rapidly, requires more aggressive, multidisciplinary management.
Nodal spread:
1. Surgical block dissection if palpable nodes or in cases of Marjolin's ulcers but the benefit of prophylactic block lymph node dissection with Marjolin's ulcers is not proven.
2. Radiotherapy
3. Adjuvant therapy may be considered in those with high-risk SCC even in the absence of evidence for local mestastasis. Imiquimod (Aldara) has been used with success for squamous cell carcinoma "in situ" of the skin and the penis, but the morbidity and discomfort of the treatment is severe. An advantage is the cosmetic result: after treatment, the skin resembles normal skin without the usual scarring and morbidity associated with standard excision. Imiquimod is not FDA-approved for any squamous cell carcinoma.
In general, squamous cell carcinomas have a high risk of local recurrence, and up to 50% do recur. Frequent skin exams with a dermatologist is recommended after treatment.
Currently, surgical excision is the most common form of treatment for skin cancers. The goal of reconstructive surgery is restoration of normal appearance and function. The choice of technique in reconstruction is dictated by the size and location of the defect. Excision and reconstruction of facial skin cancers is generally more challenging due to presence of highly visible and functional anatomic structures in the face.
When skin defects are small in size, most can be repaired with simple repair where skin edges are approximated and closed with sutures. This will result in a linear scar. If the repair is made along a natural skin fold or wrinkle line, the scar will be hardly visible. Larger defects may require repair with a skin graft, local skin flap, pedicled skin flap, or a microvascular free flap. Skin grafts and local skin flaps are by far more common than the other listed choices.
Skin grafting is patching of a defect with skin that is removed from another site in the body. The skin graft is sutured to the edges of the defect, and a bolster dressing is placed atop the graft for seven to ten days, to immobilize the graft as it heals in place. There are two forms of skin grafting: split thickness and full thickness. In a split thickness skin graft, a shaver is used to shave a layer of skin from the abdomen or thigh. The donor site regenerates skin and heals over a period of two weeks. In a full thickness skin graft, a segment of skin is totally removed and the donor site needs to be sutured closed.
Split thickness grafts can be used to repair larger defects, but the grafts are inferior in their cosmetic appearance. Full thickness skin grafts are more acceptable cosmetically. However, full thickness grafts can only be used for small or moderate sized defects.
Local skin flaps are a method of closing defects with tissue that closely matches the defect in color and quality. Skin from the periphery of the defect site is mobilized and repositioned to fill the deficit. Various forms of local flaps can be designed to minimize disruption to surrounding tissues and maximize cosmetic outcome of the reconstruction. Pedicled skin flaps are a method of transferring skin with an intact blood supply from a nearby region of the body. An example of such reconstruction is a pedicled forehead flap for repair of a large nasal skin defect. Once the flap develops a source of blood supply form its new bed, the vascular pedicle can be detached.
Photodynamic therapy (PDT) is a new modality for treatment of basal-cell carcinoma, which is administrated by application of photosensitizers to the target area. When these molecules are activated by light, they become toxic, therefore destroy the target cells. Methyl aminolevulinate is approved by EU as a photosensitizer since 2001. This therapy is also used in other skin cancer types. The 2008 study reported that PDT was a good treatment option for primary superficial BCCs, reasonable for primary low-risk nodular BCCs, but a 'relatively poor' option for high-risk lesions.
Immunotherapy research suggests that treatment using "Euphorbia peplus", a common garden weed, may be effective. Australian biopharmaceutical company Peplin is developing this as topical treatment for BCC. Imiquimod is an immunotherapy but is listed here under chemotherapy.
In the treatment of Kangri cancer, surgery is, most often, the first-line course of action to remove the primary tumor.
Sunscreen appears to be effective in preventing melanoma. In the past, use of sunscreens with a sun protection factor (SPF) rating of 50 or higher on exposed areas were recommended; as older sunscreens more effectively blocked UVA with higher SPF. Currently, newer sunscreen ingredients (avobenzone, zinc oxide, and titanium dioxide) effectively block both UVA and UVB even at lower SPFs. Sunscreen also protects against squamous cell carcinoma, another skin cancer.
Concerns have been raised that sunscreen might create a false sense of security against sun damage.
External beam radiotherapy has been used in one person to prevent the relapse and growth of tumor metastases to the head and neck regions. The prophylactic applications of radiation have been noted as “encouraging” in this one case, reducing some tumors and eliminating others.
Another study with a couple of the same authors found that radiotherapy after surgery helped with the reduction and cure of head and neck tumors in additional cases. The researchers suggest that external beam radiotherapy should be part of the treatment course for patients who have or at risk of developing tumors in the head and neck areas.
Confirmation of the clinical diagnosis is done with a skin biopsy. This is usually followed up with a wider excision of the scar or tumor. Depending on the stage, a sentinel lymph node biopsy is done, as well, although controversy exists around trial evidence for this procedure. Treatment of advanced malignant melanoma is performed from a multidisciplinary approach.
Radiotherapy is commonly used to treat Merkel-cell cancers. The radiotherapy fields used are usually very large so as to cover sufficient areas of skin. This is necessary because of MCC's aggressive local and regional metastatic behavior.
Adjuvant radiotherapy has been shown to be effective in reducing the rates of recurrence and in increasing the survival of patients with MCC. Patients who present with no distant metastases and a negative sentinel lymph node biopsy have a very good prognosis when treated with both surgery and radiotherapy (approximately 90% survival rate at five years).
Metastatic MCC may respond to treatment with chemotherapy and/or radiation, but current multimodal therapies are usually not curative. Intensive treatment can be effective in shrinking the tumor and improving operability when tumors are too large to be removed or located in a place where removal would be difficult or dangerous, or in palliation of signs and symptoms caused by metastatic tumors.
Treatment of small melanomas is often not necessary, but large tumors can cause discomfort and are usually surgically removed. Cisplatin and cryotherapy can be used to treat small tumors less than 3 centimeters, but tumors may reoccur. Cimetidine, a histamine stimulator, can cause tumors to regress in some horses, but may take up to 3 months to produce results and multiple treatments may be needed throughout the horse's life. There are few viable treatment options for horses with metastatic melanoma. However, gene therapy injections utilizing interleukin-12 and 18-encoding DNA plasmids have shown promise in slowing the progression of tumors in patients with metastatic melanoma.
The U.S. Food and Drug Administration granted in March 2017 an accelerated approval to the checkpoint-inhibitor avelumab for the treatment of adults and pediatric patients 12 years and older with metastatic Merkel cell carcinoma (MCC). This is the first FDA-approved treatment for metastatic MCC. Avelumab targets the PD-1/PD-L1 pathway (proteins found on the body’s immune cells and some cancer cells). By blocking these interactions, avelumab may help the body’s immune system attack cancer cells.
Treatment options vary and depend on the type and stage of cancer. Common treatments include surgery, chemotherapy, radiation therapy, amputation, and immunotherapy. A combination of therapies may be used. Knowledge and treatment of cancer have increased significantly in the past three decades. Survival rates have also increased due to the increase prevalence of canine cancer treatment centers and breakthroughs in targeted drug development. Canine cancer treatment has become an accepted clinical practice and access to treatment for owners has widely expanded recently. Cancer-targeting drugs most commonly function to inhibit excessive cell proliferation by attacking the replicating cells. However, there is still a prevalent pharmacy gap in veterinary oncology.
There is one canine tumor vaccine approved by the USDA, for preventing canine melanoma. The Oncept vaccine activates T-cell responses and antibodies against tumor-specific tyrosinase proteins. There is limited information about canine tumor antigens, which is the reason for the lack of tumor-specific vaccines and immunotherapy treatment plans for dogs.
Success of treatment depends on the form and extent of the cancer and the aggressiveness of the therapy. Early detection offers the best chance for successful treatment. The heterogeneity of tumors makes drug development increasingly complex, especially as new causes are discovered. No cure for cancer in canines exist.
Some dog owners opt for no treatment of the cancer at all, in which case palliative care, including pain relief, may be offered. Regardless of how treatment proceeds following a diagnosis, the quality of life of the pet is an important consideration. In cases where the cancer is not curable, there are still many things which can be done to alleviate the dog's pain. Good nutrition and care from the dog's owner can greatly enhance quality of life.
Staging and treatment are generally handled by an oncologist familiar with gynecologic cancer. Surgery is a mainstay of therapy depending on anatomical staging and is usually reserved for cancers that have not spread beyond the vulva. Surgery may involve a wide local excision, radical partial vulvectomy, or radical complete vulvectomy with removal of vulvar tissue, inguinal and femoral lymph nodes. In cases of early vulvar cancer, the surgery may be less extensive and consist of wide excision or a simple vulvectomy. Surgery is significantly more extensive when the cancer has spread to nearby organs such as the urethra, vagina, or rectum. Complications of surgery include wound infection, sexual dysfunction, edema and thrombosis, as well as lymphedema secondary to dissected lymph nodes.
Sentinel lymph node (SLN) dissection is the identification of the main lymph node(s) draining the tumor, with the aim of removing as few nodes as possible, decreasing the risk of adverse effects. Location of the sentinel node(s) may require the use of technetium(99m)-labeled nano-colloid, or a combination of technetium and 1% isosulfan blue dye, wherein the combination may reduce the number of women with "'missed"' groin node metastases compared with technetium only.
Radiation therapy may be used in more advanced vulvar cancer cases when disease has spread to the lymph nodes and/or pelvis. It may be performed before or after surgery. Chemotherapy is not usually used as primary treatment but may be used in advanced cases with spread to the bones, liver or lungs. It may also be given at a lower dose together with radiation therapy.
Women with vulvar cancer should have routine follow-up and exams with their oncologist, often every 3 months for the first 2–3 years after treatment. They should not have routine surveillance imaging to monitor the cancer unless new symptoms appear or tumor markers begin rising. Imaging without these indications is discouraged because it is unlikely to detect a recurrence or improve survival and is associated with its own side effects and financial costs.
There are different opinions on the best treatment of DCIS. Surgical removal, with or without additional radiation therapy or tamoxifen, is the recommended treatment for DCIS by the National Cancer Institute. Surgery may be either a breast-conserving lumpectomy or a mastectomy (complete or partial removal of the affected breast). If a lumpectomy is used it is often combined with radiation therapy. Tamoxifen may be used as hormonal therapy if the cells show estrogen receptor positivity. Chemotherapy is not needed for DCIS since the disease is noninvasive.
While surgery reduces the risk of subsequent cancer, many people never develop cancer even without treatment and there associated side effects. There is no evidence comparing surgery with watchful waiting and some feel watchful waiting may be a reasonable option in certain cases.
While sarcoids may spontaneously regress regardless of treatment in some instances, course and duration of disease is highly unpredictable and should be considered on a case-by-case basis taking into account cost of the treatment and severity of clinical signs. Surgical removal alone is not effective, with recurrence occurring in 50 to 64% of cases, but removal is often done in conjunction with other treatments. Topical treatment with products containing bloodroot extract (from the plant "Sanguinaria canadensis") for 7 to 10 days has been reported to be effective in removing small sarcoids, but the salve's caustic nature may cause pain and the sarcoid must be in an area where a bandage can be applied. Freezing sarcoids with liquid nitrogen (cryotherapy) is another affordable method, but may result in scarring or depigmentation. Topical application of the anti-metabolite 5-fluorouracil has also obtained favorable results, but it usually takes 30 to 90 days of repeated application before any effect can be realized. Injection of small sarcoids (usually around the eyes) with the chemotherapeutic agent cisplatin and the immunomodulator BCG have also achieved some success. In one trial, BCG was 69% effective in treating nodular and small fibroblastic sarcoids around the eye when repeatedly injected into the lesion and injection with cisplatin was 33% effective overall (mostly in horses with nodular sarcoids). However, BCG treatment carries a risk of allergic reaction in some horses and cisplatin has a tendency to leak out of sarcoids during repeated dosing. External beam radiation can also be used on small sarcoids, but is often impractical. Cisplatin electrochemotherapy (the application of an electrical field to the sarcoid after the injection of cisplatin, with the horse under general anesthesia), when used with or without prior surgery to remove the sarcoid, had a non-recurrence rate after four years of 97.9% in one retrospective study. There is a chance of sarcoid recurrence for all modalities even after apparently successful treatment. While sarcoids are not fatal, large aggressive tumors that destroy surrounding tissue can cause discomfort and loss of function and be resistant to treatment, making euthanasia justifiable in some instances. Sarcoids may be the most common skin-related reason for euthanasia.
Use of radiation therapy after lumpectomy provides equivalent survival rates to mastectomy, although there is a slightly higher risk of recurrent disease in the same breast in the form of further DCIS or invasive breast cancer. Systematic reviews (including a Cochrane review) indicate that the addition of radiation therapy to lumpectomy reduces recurrence of DCIS or later onset of invasive breast cancer in comparison with breast-conserving surgery alone, without affecting mortality. The Cochrane review did not find any evidence that the radiation therapy had any long-term toxic effects. While the authors caution that longer follow-up will be required before a definitive conclusion can be reached regarding long-term toxicity, they point out that ongoing technical improvements should further restrict radiation exposure in healthy tissues. They do recommend that comprehensive information on potential side effects is given to women who receive this treatment. The addition of radiation therapy to lumpectomy appears to reduce the risk of local recurrence to approximately 12%, of which approximately half will be DCIS and half will be invasive breast cancer; the risk of recurrence is 1% for women undergoing mastectomy.
Laser therapy uses high-intensity light to treat cancer by shrinking or destroying tumors or precancerous growths. Lasers are most commonly used to treat superficial cancers that are on the surface of the body or the lining of internal organs. It is used to treat basal cell skin cancer and the very early stages of others like cervical, penile, vaginal, vulvar, and non-small cell lung cancer. It is often combined with other treatments, such as surgery, chemotherapy, or radiation therapy. Laser-induced interstitial thermotherapy (LITT), or interstitial laser photocoagulation, uses lasers to treat some cancers using hyperthermia, which uses heat to shrink tumors by damaging or killing cancer cells. Laser are more precise than surgery and cause less damage, pain, bleeding, swelling, and scarring. A disadvantage is surgeons must have specialized training. It may be more expensive than other treatments.
Identifying and treatment the underlying malignancy constitutes an uptime approach. Topical 5-fluorouracil may occasionally be help, as may oral retinoids, topical steroids, vitamin A acid, urea, salicylic acid, podophyllotoxin, and cryodestruction employing liquid.
A variety of therapies using immunotherapy, stimulating or helping the immune system to fight cancer, have come into use since 1997. Approaches include antibodies, checkpoint therapy and adoptive cell transfer.
In breast cancer survivors, it is recommended to first consider non-hormonal options for menopausal effects, such as bisphosphonates or selective estrogen receptor modulators (SERMs) for osteoporosis, and vaginal estrogen for local symptoms. Observational studies of systemic hormone replacement therapy after breast cancer are generally reassuring. If hormone replacement is necessary after breast cancer, estrogen-only therapy or estrogen therapy with an intrauterine device with progestogen may be safer options than combined systemic therapy.
Improvement usually parallels that of the cancer, whether surgical or chemotherapeutic. Generalization of the associated visceral malignancy may worsen the eruption.
The most successful treatment for angiosarcoma is amputation of the affected limb if possible. Chemotherapy may be administered if there is metastatic disease. If there is no evidence of metastasis beyond the lymphedematous limb, adjuvant chemotherapy may be given anyway due to the possibility of micrometastatic disease. Evidence supporting the effectiveness of chemotherapy is, in many cases, unclear due to a wide variety of prognostic factors and small sample size. However, there is some evidence to suggest that drugs such as paclitaxel, doxorubicin, ifosfamide, and gemcitabine exhibit antitumor activity.
Treatments of cancer in cats usually consists of diagnosis and observation of the tumor to determine its type and size, the development of a treatment plan, the associated goals on the part of the treatment methods, and the regular evaluation of the overall health of the pet.