Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The use of chemotherapy to treat stomach cancer has no firmly established standard of care. Unfortunately, stomach cancer has not been particularly sensitive to these drugs, and chemotherapy, if used, has usually served to palliatively reduce the size of the tumor, relieve symptoms of the disease and increase survival time. Some drugs used in stomach cancer treatment have included: 5-FU (fluorouracil) or its analog capecitabine, BCNU (carmustine), methyl-CCNU (semustine) and doxorubicin (Adriamycin), as well as mitomycin C, and more recently cisplatin and taxotere, often using drugs in various combinations. The relative benefits of these different drugs, alone and in combination, are unclear. Clinical researchers are exploring the benefits of giving chemotherapy before surgery to shrink the tumor, or as adjuvant therapy after surgery to destroy remaining cancer cells.
Surgery remains the only curative therapy for stomach cancer. Of the different surgical techniques, endoscopic mucosal resection (EMR) is a treatment for early gastric cancer (tumor only involves the mucosa) that was pioneered in Japan and is available in the United States at some centers. In this procedure, the tumor, together with the inner lining of stomach (mucosa), is removed from the wall of the stomach using an electrical wire loop through the endoscope. The advantage is that it is a much smaller operation than removing the stomach. Endoscopic submucosal dissection (ESD) is a similar technique pioneered in Japan, used to resect a large area of mucosa in one piece. If the pathologic examination of the resected specimen shows incomplete resection or deep invasion by tumor, the patient would need a formal stomach resection. A 2016 Cochrane review found low quality evidence of no difference in short-term mortality between laparoscopic and open gastrectomy (removal of stomach), and that benefits or harms of laparoscopic gastrectomy cannot be ruled out.
Those with metastatic disease at the time of presentation may receive palliative surgery and while it remains controversial, due to the possibility of complications from the surgery itself and the fact that it may delay chemotherapy the data so far is mostly positive, with improved survival rates being seen in those treated with this approach.
10 to 20% of patients treated for anal cancer will develop distant metastatic disease following treatment. Metastatic or recurrent anal cancer is difficult to treat, and usually requires chemotherapy. Radiation is also employed to palliate specific locations of disease that may be causing symptoms. Chemotherapy commonly used is similar to other squamous cell epithelial neoplasms, such as platinum analogues, anthracyclines such as doxorubicin, and antimetabolites such as 5-FU and capecitabine. JD Hainsworth developed a protocol that includes Taxol and Carboplatinum along with 5-FU. Median survival rates for patients with distant metastases ranges from 8 to 34 months.
Localised disease (carcinoma-in-situ) and the precursor condition, anal intraepithelial neoplasia (anal dysplasia or AIN) can be ablated with minimally invasive methods such as Infrared Photocoagulation.
Previously, anal cancer was treated with surgery, and in early-stage disease (i.e., localised cancer of the anus without metastasis to the inguinal lymph nodes), surgery is often curative. The difficulty with surgery has been the necessity of removing the internal and external anal sphincter, with concomitant fecal incontinence. For this reason, many patients with anal cancer have required permanent colostomies.
Current gold-standard therapy is chemotherapy and radiation treatment to reduce the necessity of debilitating surgery. This "combined modality" approach has led to the increased preservation of an intact anal sphincter, and therefore improved quality of life after definitive treatment. Survival and cure rates are excellent, and many patients are left with a functional sphincter. Some patients have fecal incontinence after combined chemotherapy and radiation. Biopsies to document disease regression after chemotherapy and radiation were commonly advised, but are not as frequent any longer. Current chemotherapy consists of continuous infusion 5-FU over four days with bolus mitomycin given concurrently with radiation. 5-FU and cisplatin are recommended for metastatic anal cancer.
While a combination of radiation and chemotherapy may be useful for rectal cancer, its use in colon cancer is not routine due to the sensitivity of the bowels to radiation. Just as for chemotherapy, radiotherapy can be used in the neoadjuvant and adjuvant setting for some stages of rectal cancer.
In both cancer of the colon and rectum, chemotherapy may be used in addition to surgery in certain cases. The decision to add chemotherapy in management of colon and rectal cancer depends on the stage of the disease.
In Stage I colon cancer, no chemotherapy is offered, and surgery is the definitive treatment. The role of chemotherapy in Stage II colon cancer is debatable, and is usually not offered unless risk factors such as T4 tumor or inadequate lymph node sampling is identified. It is also known that the people who carry abnormalities of the mismatch repair genes do not benefit from chemotherapy. For stage III and Stage IV colon cancer, chemotherapy is an integral part of treatment.
If cancer has spread to the lymph nodes or distant organs, which is the case with stage III and stage IV colon cancer respectively, adding chemotherapy agents fluorouracil, capecitabine or oxaliplatin increases life expectancy. If the lymph nodes do not contain cancer, the benefits of chemotherapy are controversial. If the cancer is widely metastatic or unresectable, treatment is then palliative. Typically in this setting, a number of different chemotherapy medications may be used. Chemotherapy drugs for this condition may include capecitabine, fluorouracil, irinotecan, oxaliplatin and UFT. The drugs capecitabine and fluorouracil are interchangeable, with capecitabine being an oral medication while fluorouracil being an intravenous medicine. Some specific regimens used for CRC are FOLFOX, FOLFOXIRI, and FOLFIRI. Antiangiogenic drugs such as bevacizumab are often added in first line therapy. Another class of drugs used in the second line setting are epidermal growth factor receptor inhibitors, of which the two FDA approved ones are cetuximab and panitumumab.
The primary difference in the approach to low stage rectal cancer is the incorporation of radiation therapy. Often, it is used in conjunction with chemotherapy in a neoadjuvant fashion to enable surgical resection, so that ultimately as colostomy is not required. However, it may not be possible in low lying tumors, in which case, a permanent colostomy may be required. Stage IV rectal cancer is treated similar to stage IV colon cancer.
Treatment of hypopharyngeal cancer depends on the prognosis (chance of recovery), age, stage, and general health of the patient. Because hypopharyngeal cancer is often advanced at the time of diagnosis, treatment also depends on the overall goal. The goal may simply be to keep the patient talking, eating, and breathing normally.
Treatment usually begins with surgery and then a course of radiation for cancer that has progressed past Stage I. For cancer that is advanced, which is typical of hypopharyngeal cancer, neoadjuvant chemotherapy may be used. This is performed by administering chemotherapy before surgery. Neoadjuvant chemotherapy in conjunction with radiation and surgery has yielded the best results in patients with Stage III and Stage IV cancers.
Cetuximab is the first-line therapy for Ménétrier disease. Cetuximab is a monoclonal antibody against epidermal growth factor receptor (EGFR), and has been shown to be effective in treating Ménétrier disease.
Several medications have been used in the treatment of the condition, with variable efficacy. Such medications include: anticholinergic agents, prostaglandins, proton pump inhibitors, prednisone, and H2 receptor antagonists. Anticholinergics decrease protein loss. A high-protein diet should be recommended to replace protein loss in patients with low levels of albumin in the blood (hypoalbuminemia). Any ulcers discovered during the evaluation should be treated in standard fashion.
Severe disease with persistent and substantial protein loss despite cetuximab may require total removal of the stomach. Subtotal gastrectomy is performed by some; it may be associated with higher morbidity and mortality secondary to the difficulty in obtaining a patent and long-lasting anastomosis between normal and hyperplastic tissue. In adults, there is no FDA approved treatment other than gastrectomy and a high-protein diet. Cetuximab is approved for compassionate use in the treatment of the disease.
Pediatric cases are normally treated for symptoms with the disease clearing up in weeks to months.
In most people with peptic ulcer disease, the oedema will usually settle with conservative management with nasogastric suction, replacement of fluids and electrolytes and proton pump inhibitors.
Other medical treatments have been tried and include estrogen and progesterone therapy, Corticostreoids are effective, but are "limited by their side effects."
GAVE is treated commonly by means of an endoscope, including argon plasma coagulation and electrocautery. Since endoscopy with argon photocoagulation is "usually effective", surgery is "usually not required". Coagulation therapy is well-tolerated but "tends to induce oozing and bleeding." "Endoscopy with thermal ablation" is favored medical treatment because of its low side effects and low mortality, but is "rarely curative." Treatment of GAVE can be categorized into endoscopic, surgical and pharmacologic. Surgical treatment is definitive but it is rarely done nowadays with the variety of treatment options available. Some of the discussed modalities have been used in GAVE patients with another underlying disease rather than SSc; they are included as they may be tried in resistant SSc-GAVE patients. Symptomatic treatment includes iron supplementation and blood transfusion for cases with severe anemia, proton pump inhibitors may ameliorate the background chronic gastritis and minute erosions that commonly co-existed in biopsy reports.
Surgery is indicated in cases of gastric outlet obstruction in which there is significant obstruction and in cases where medical therapy has failed. Endoscopic balloon therapy may be attempted as an alternative to surgery, with balloon dilation reporting success rates of 76% after repeat dilatons. The operation usually performed is an antrectomy, the removal of the antral portion of the stomach. Other surgical approaches include: vagotomy, the severing of the vagus nerve, the Billroth I, a procedure which involves anastomosing the duodenum to the distal stomach, or a bilateral truncal vagotomy with gastrojejunostomy.
Antacids are a common treatment for mild to medium gastritis. When antacids do not provide enough relief, medications such as H blockers and proton-pump inhibitors that help reduce the amount of acid are often prescribed.
Cytoprotective agents are designed to help protect the tissues that line the stomach and small intestine. They include the medications sucralfate and misoprostol. If NSAIDs are being taken regularly, one of these medications to protect the stomach may also be taken. Another cytoprotective agent is bismuth subsalicylate.
Several regimens are used to treat "H. pylori" infection. Most use a combination of two antibiotics and a proton pump inhibitor. Sometimes bismuth is added to the regimen.
treatment to be directed towards the findings in investigation if it is found to be AMAG immunosupressive drugs and chemotherapy with antineoplastic drugs.
In case of confirmed malignancy of stomach complete or step ladder or stage ladder resection of gastric or stomach to be done.
Surgical excision (removal) of the tumor is usually recommended if the tumor is small enough, and if surgery is likely to result in a functionally satisfactory result. Radiation therapy with or without chemotherapy is often used in conjunction with surgery, or as the definitive radical treatment, especially if the tumour is inoperable. Surgeries for oral cancers include:
- Maxillectomy (can be done with or without orbital exenteration)
- Mandibulectomy (removal of the mandible or lower jaw or part of it)
- Glossectomy (tongue removal, can be total, hemi or partial). When glossectomy is performed for smaller tumors (< 4 cm), the adequacy of resection (margin status) is best assessed from the resected specimen itself. The status of the margin (positive/tumor cut through versus negative/clear margin) obtained from the glossectomy specimen appears to be of prognostic value, while the status of the margin sampled from the post-glossectomy defect is not. The method of margin sampling appears to correlate with local recurrence: preference for tumor bed/defect margins may be associated with worse local control.
- Radical neck dissection
- Mohs surgery or CCPDMA
- Combinational, e.g. glossectomy and laryngectomy done together
- Feeding tube to sustain nutrition
Owing to the vital nature of the structures in the head and neck area, surgery for larger cancers is technically demanding. Reconstructive surgery may be required to give an acceptable cosmetic and functional result. Bone grafts and surgical flaps such as the radial forearm flap are used to help rebuild the structures removed during excision of the cancer. An oral prosthesis may also be required. Most oral cancer patients depend on a feeding tube for their hydration and nutrition. Some will also get a port for the chemo to be delivered. Many oral cancer patients are disfigured and suffer from many long term after effects. The after effects often include fatigue, speech problems, trouble maintaining weight, thyroid issues, swallowing difficulties, inability to swallow, memory loss, weakness, dizziness, high frequency hearing loss and sinus damage.
Survival rates for oral cancer depend on the precise site and the stage of the cancer at diagnosis. Overall, 2011 data from the SEER database shows that survival is around 57% at five years when all stages of initial diagnosis, all genders, all ethnicities, all age groups, and all treatment modalities are considered. Survival rates for stage 1 cancers are approximately 90%, hence the emphasis on early detection to increase survival outcome for patients. Similar survival rates are reported from other countries such as Germany.
Following treatment, rehabilitation may be necessary to improve movement, chewing, swallowing, and speech. Speech and language pathologists may be involved at this stage.
Chemotherapy is useful in oral cancers when used in combination with other treatment modalities such as radiation therapy. It is not used alone as a monotherapy. When a cure is unlikely, it can also be used to extend life and can be considered palliative but not curative care. Biological agents such as Cetuximab have recently been shown to be effective in the treatment of squamous cell head and neck cancers, and are likely to have an increasing role in the future management of this condition when used in conjunction with other established treatment modalities.
Treatment of oral cancer will usually be by a multidisciplinary team, with treatment professionals from the realms of radiation, surgery, chemotherapy, nutrition, dentistry, and even psychology all possibly involved with diagnosis, treatment, rehabilitation, and patient care.
Surgery is the most common treatment for cancer of the urethra. One of the following types of surgery may be done: Open excision, Electro-resection with flash, Laser surgery, Cystourethrectomy, Cystoprostatectomy, Anterior body cavity, or Incomplete or basic penectomy surgery.
Chemotherapy is sometimes used to destroy urethral cancer cells. It is a systemic urethral cancer treatment (i.e., destroys urethral cancer cells throughout the body) that is administered orally or intravenously. Medications are often used in combination to destroy urethral cancer that has metastasized. Commonly used drugs include cisplatin, vincristine, and methotrexate.
Side effects include anemia (causing fatigue, weakness), nausea and vomiting, loss of appetite, hair loss, mouth sores, increased risk for infection, shortness of breath, or excessive bleeding and bruising.
H2 antagonists or proton-pump inhibitors decrease the amount of acid in the stomach, helping with healing of ulcers.
The treatment for bile reflux is the same as the treatment for acidic reflux. In general, everything that can
reduce acidic reflux can reduce bile reflux. Examples include lifestyle modification, weight reduction, and the avoidance of eating immediately before sleep or being in the supine position immediately after meals. In addition, smoking has been found to be a factor in the development of acidic reflux. Thus, all of these factors should be applied to bile reflux as well.
Likewise, drugs that reduce the secretion of gastric acid (e.g., proton pump inhibitors)
or that reduce gastric contents or volume can be used to treat acidic bile reflux. Because prokinetic drugs increase the motility of the stomach and accelerate gastric emptying, they can also reduce bile reflux. Other drugs that reduce the relaxations of the lower esophageal sphincter, such as baclofen, have also proven to reduce bile reflux, particularly in patients who are refractory to (medically unresponsive to) proton pump inhibitor therapy.
Medications used in managing biliary reflux include bile acid sequestrants, particularly cholestyramine, which disrupt the circulation of bile in the digestive tract and sequester bile that would otherwise cause symptoms when refluxed; and prokinetic agents, to move material from the stomach to the small bowel more rapidly and prevent reflux.
Biliary reflux may also be treated surgically, if medications are ineffective or if precancerous tissue is present in the esophagus.
When "H. pylori" infection is present, the most effective treatments are combinations of 2 antibiotics (e.g. clarithromycin, amoxicillin, tetracycline, metronidazole) and a proton-pump inhibitor (PPI), sometimes together with a bismuth compound. In complicated, treatment-resistant cases, 3 antibiotics (e.g. amoxicillin + clarithromycin + metronidazole) may be used together with a PPI and sometimes with bismuth compound. An effective first-line therapy for uncomplicated cases would be amoxicillin + metronidazole + pantoprazole (a PPI).
Treatment options vary and depend on the type and stage of cancer. Common treatments include surgery, chemotherapy, radiation therapy, amputation, and immunotherapy. A combination of therapies may be used. Knowledge and treatment of cancer have increased significantly in the past three decades. Survival rates have also increased due to the increase prevalence of canine cancer treatment centers and breakthroughs in targeted drug development. Canine cancer treatment has become an accepted clinical practice and access to treatment for owners has widely expanded recently. Cancer-targeting drugs most commonly function to inhibit excessive cell proliferation by attacking the replicating cells. However, there is still a prevalent pharmacy gap in veterinary oncology.
There is one canine tumor vaccine approved by the USDA, for preventing canine melanoma. The Oncept vaccine activates T-cell responses and antibodies against tumor-specific tyrosinase proteins. There is limited information about canine tumor antigens, which is the reason for the lack of tumor-specific vaccines and immunotherapy treatment plans for dogs.
Success of treatment depends on the form and extent of the cancer and the aggressiveness of the therapy. Early detection offers the best chance for successful treatment. The heterogeneity of tumors makes drug development increasingly complex, especially as new causes are discovered. No cure for cancer in canines exist.
Some dog owners opt for no treatment of the cancer at all, in which case palliative care, including pain relief, may be offered. Regardless of how treatment proceeds following a diagnosis, the quality of life of the pet is an important consideration. In cases where the cancer is not curable, there are still many things which can be done to alleviate the dog's pain. Good nutrition and care from the dog's owner can greatly enhance quality of life.
Certain foods and lifestyle are considered to promote gastroesophageal reflux, but most dietary interventions have little supporting evidence. Avoidance of specific foods and of eating before lying down should be recommended only to those in which they are associated with the symptoms. Foods that have been implicated include coffee, alcohol, chocolate, fatty foods, acidic foods, and spicy foods. Weight loss and elevating the head of the bed are generally useful. A wedge pillow that elevates the head may inhibit gastroesophageal reflux during sleep. Stopping smoking and not drinking alcohol do not appear to result in significant improvement in symptoms. Although moderate exercise may improve symptoms in people with GERD, vigorous exercise may worsen them.
The treatments for GERD include lifestyle modifications, medications, and possibly surgery. Initial treatment is frequently with a proton-pump inhibitor such as omeprazole.
Superficial tumors (those not entering the muscle layer) can be "shaved off" using an electrocautery device attached to a cystoscope, which in that case is called a resectoscope. The procedure is called transurethral resection of bladder tumor—TURBT—and serves primarily for pathological staging. In case of non-muscle invasive bladder cancer the TURBT is in itself the treatment, but in case of muscle invasive cancer, the procedure is insufficient for final treatment.
Immunotherapy by intravesicular delivery of Bacillus Calmette–Guérin (BCG) is also used to treat and prevent the recurrence of superficial tumors. BCG is a vaccine against tuberculosis that is prepared from attenuated (weakened) live bovine tuberculosis bacillus, Mycobacterium bovis, that has lost its virulence in humans. BCG immunotherapy is effective in up to 2/3 of the cases at this stage, and in randomized trials has been shown to be superior to standard chemotherapy. The mechanism by which BCG prevents recurrence is unknown, but the presence of bacteria in the bladder may trigger a localized immune reaction which clears residual cancer cells.
Patients whose tumors recurred after treatment with BCG are more difficult to treat. Many physicians recommend cystectomy for these patients. This recommendation is in accordance with the official guidelines of the European Association of Urologists (EAU) and the American Urological Association (AUA) However, many patients refuse to undergo this life changing operation, and prefer to try novel conservative treatment options before opting to this last radical resort. Device assisted chemotherapy is one such group of novel technologies used to treat superficial bladder cancer. These technologies use different mechanisms to facilitate the absorption and action of a chemotherapy drug instilled directly into the bladder. Another technology - electromotive drug administration (EMDA) – uses an electric current to enhance drug absorption after surgical removal of the tumor. Another technology, thermotherapy, uses radio-frequency energy to directly heat the bladder wall, which together with chemotherapy shows a synergistic effect, enhancing each other's capacity to kill tumor cells. This technology was studied by different investigators.
Treatment methods include surgery, chemotherapy, radiation therapy and medication.
Partial surgical resection is the optimal treatment for hepatocellular carcinoma (HCC) when patients have sufficient hepatic function reserve. Increased risk of complications such as liver failure can occur with resection of cirrhotic (i.e. less-than-optimally functional) livers. 5-year survival rates after resection have massively improved over the last few decades and can now exceed 50%. However, recurrence rates after resection can exceed 70%, whether due to spread of the initial tumor or formation of new tumors . Liver transplantation can also be considered in cases of HCC where this form of treatment can be tolerated and the tumor fits specific criteria (such as the Milan criteria). In general, patients who are being considered for liver transplantation have multiple hepatic lesions, severe underlying liver dysfunction, or both. Less than 30-40% of individuals with HCC are eligible for surgery and transplant because the cancer is often detected at a late stage. Also, HCC can progress during the waiting time for liver transplants, which can prevent transplant due to the strict criteria.
Percutaneous ablation is the only non-surgical treatment that can offer cure. There are many forms of percutaneous ablation, which consist of either injecting chemicals into the liver (ethanol or acetic acid) or producing extremes of temperature using radio frequency ablation, microwaves, lasers or cryotherapy. Of these, radio frequency ablation has one of the best reputations in HCC, but the limitations include inability to treat tumors close to other organs and blood vessels due to heat generation and the heat sink effect, respectively. In addition, long-term of outcomes of percutaneous ablation procedures for HCC have not been well studied. In general, surgery is the preferred treatment modality when possible.
Systemic chemotherapeutics are not routinely used in HCC, although local chemotherapy may be used in a procedure known as transarterial chemoembolization. In this procedure, cytotoxic drugs such as doxorubicin or cisplatin with lipiodol are administered and the arteries supplying the liver are blocked by gelatin sponge or other particles. Because most systemic drugs have no efficacy in the treatment of HCC, research into the molecular pathways involved in the production of liver cancer produced sorafenib, a targeted therapy drug that prevents cell proliferation and blood cell growth. Sorafenib obtained FDA approval for the treatment of advanced hepatocellular carcinoma in November 2007. This drug provides a survival benefit for advanced HCC.
Radiotherapy is not often used in HCC because the liver is not tolerant to radiation. Although with modern technology it is possible to provide well-targeted radiation to the tumor, minimizing the dose to the rest of the liver. Dual treatments of radiotherapy plus chemoembolization, local chemotherapy, systemic chemotherapy or targeted therapy drugs may show benefit over radiotherapy alone.