Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment is always necessary.
The treatment for hydatidiform mole consists of the evacuation of pregnancy. Evacuation will lead to the relief of symptoms, and also prevent later complications. Suction curettage is the preferred method of evacuation. Hysterectomy is an alternative if no further pregnancies are wished for by the female patient. Hydatidiform mole also has successfully been treated with systemic (intravenous) methotrexate.
The treatment for invasive mole or choriocarcinoma generally is the same. Both are usually treated with chemotherapy. Methotrexate and dactinomycin are among the chemotherapy drugs used in GTD. Only a few women with GTD suffer from poor prognosis metastatic gestational trophoblastic disease. Their treatment usually includes chemotherapy. Radiotherapy can also be given to places where the cancer has spread, e.g. the brain.
Women who undergo chemotherapy are advised not to conceive for one year after completion of treatment. These women also are likely to have an earlier menopause. It has been estimated by the Royal College of Obstetricians and Gynaecologists that the age at menopause for women who receive single agent chemotherapy is advanced by 1 year, and by 3 years for women who receive multi agent chemotherapy.
The term «persistent trophoblastic disease» (PTD) is used when after treatment of a molar pregnancy, some molar tissue is left behind and again starts growing into a tumour. Although PTD can spread within the body like a malignant cancer, the overall cure rate is nearly 100%.
In the vast majority of patients, treatment of PTD consist of chemotherapy. Only about 10% of patients with PTD can be treated successfully with a second curettage.
Since gestational choriocarcinoma (which arises from a hydatidiform mole) contains paternal DNA (and thus paternal antigens), it is exquisitely sensitive to chemotherapy. The cure rate, even for metastatic gestational choriocarcinoma, is around 90–95%.
At present, treatment with single-agent methotrexate is recommended for low-risk disease, while intense combination regimens including EMACO (etoposide, methotrexate, actinomycin D, cyclosphosphamide and vincristine (Oncovin) are recommended for intermediate or high-risk disease.
Hysterectomy (surgical removal of the uterus) can also be offered to patients > 40 years of age or those for whom sterilisation is not an obstacle. It may be required for those with severe infection and uncontrolled bleeding.
Choriocarcinoma arising in the testicle is rare, malignant and highly resistant to chemotherapy. The same is true of choriocarcinoma arising in the ovary. Testicular choriocarcinoma has the worst prognosis of all germ-cell cancers.
The uterine curettage is generally done under the effect of anesthesia, preferably spinal anesthesia in hemodynamically stable patients. The advantages of spinal anesthesia over general anesthesia include ease of technique, favorable effects on the pulmonary system, safety in patients with hyperthyroidism and non-tocolytic pharmacological properties. Additionally, by maintaining patient’s consciousness one can diagnose the complications like uterine perforation, cardiopulmonary distress and thyroid storm at an earlier stage than when the patient is sedated or is under general anesthesia.
Hydatidiform moles should be treated by evacuating the uterus by uterine suction or by surgical curettage as soon as possible after diagnosis, in order to avoid the risks of choriocarcinoma. Patients are followed up until their serum human chorionic gonadotrophin (hCG) level has fallen to an undetectable level. Invasive or metastatic moles (cancer) may require chemotherapy and often respond well to methotrexate. As they contain paternal antigens, the response to treatment is nearly 100%. Patients are advised not to conceive for half a year after hCG levels have normalized. The chances of having another molar pregnancy are approximately 1%.
Management is more complicated when the mole occurs together with one or more normal fetuses.
Small chorangiomas are not treated. Large chorangioma can be treated several ways, including chemical ablation and laser coagulation.
Choriocarcinoma is a malignant, trophoblastic cancer, usually of the placenta. It is characterized by "early hematogenous spread" to the lungs. It belongs to the malignant end of the spectrum in gestational trophoblastic disease (GTD). It is also classified as a germ cell tumor and may arise in the testis or ovary.
Treatment may be delivery by caesarean section and abdominal hysterectomy if placenta accreta is diagnosed before birth. Oxytocin and antibiotics are used for post-surgical management. When there is partially separated placenta with focal accreta, best option is removal of placenta. If it is important to save the woman's uterus (for future pregnancies) then resection around the placenta may be successful. Conservative treatment can also be uterus sparing but may not be as successful and has a higher risk of complications.
Techniques include:
- Leaving the placenta in the uterus and curettage of uterus. Methotrexate has been used in this case.
- Intrauterine balloon catheterisation to compress blood vessels
- Embolisation of pelvic vessels
- Internal iliac artery ligation
- Bilateral uterine artery ligation
In cases where there is invasion of placental tissue and blood vessels into the bladder, it is treated in similar manner to abdominal pregnancy and manual placental removal is avoided. However, this may eventually need hysterectomy and/or partial cystectomy.
If the patient decides to proceed with a vaginal delivery, blood products for transfusion and an anesthesiologist are kept ready at delivery.
The first step in management of uterine atony is uterine massage. The next step is pharmacological therapies, the first of which is oxytocin, used because it initiates rhythmic contractions of the uterus, compressing the spiral arteries which should reduce bleeding. The next step in the pharmacological management is the use of methylergometrine, which is an ergot derivative, much like that use in the abortive treatment of migraines. Its side effect of hypertension means its use should not be used in those with hypertension or pre-eclampsia. In those with hypertension, the use of prostaglandin F is indicated (but beware of its use in patients with asthma).
Another option Carbetocin and Carboprost where Oxytocin and ergometrin is inappropriate.
Trophoblastic neoplasms derive from trophoblastic tissue. Examples include:
- Choriocarcinoma
- Hydatidiform mole
The use of the so-called Solomon technique or dichorionization in fetoscopic laser therapy for TTTS is proven to be beneficial in preventing post-laser TAPS. With this technique, not only all anastomoses are coagulated but also a line is drawn between those in order to coagulate anastomoses that might not (yet) be visible during fetoscopy. It should be stressed that the success of such a technique is highly dependent on the specific situation. For example, when one of the fetusses obstructs the view on the vascular equator (the part of the placenta where the anastomoses need to be coagulated), complete dichorionization by the Solomon technique might not be possible.
Fertility may sometimes be restored by removal of adhesions, depending on the severity of the initial trauma and other individual patient factors. Operative hysteroscopy is used for visual inspection of the uterine cavity during adhesion dissection (adhesiolysis). However, hysteroscopy is yet to become a routine gynaecological procedure and only 15% of US gynecologists perform office hysteroscopy {Isaacson, 2002}. Adhesion dissection can be technically difficult and must be performed with care in order to not create new scars and further exacerbate the condition. In more severe cases, adjunctive measures such as laparoscopy are used in conjunction with hysteroscopy as a protective measure against uterine perforation. Microscissors are usually used to cut adhesions. Electrocauterization is not recommended.
As IUA frequently reform after surgery, techniques have been developed to prevent recurrence of adhesions. Methods to prevent adhesion reformation include the use of mechanical barriers (Foley catheter, saline-filled Cook Medical Balloon Uterine Stent, IUCD) and gel barriers (Seprafilm, Spraygel, autocrosslinked hyaluronic acid gel Hyalobarrier) to maintain opposing walls apart during healing {Tsapanos, 2002}; {Guida, 2004};{Abbott, 2004}, thereby preventing the reformation of adhesions. Antibiotic prophylaxis is necessary in the presence of mechanical barriers to reduce the risk of possible infections. A common pharmacological method for preventing reformation of adhesions is sequential hormonal therapy with estrogen followed by a progestin to stimulate endometrial growth and prevent opposing walls from fusing together {Roge, 1996}. However, there have been no randomized controlled trials (RCTs) comparing post-surgical adhesion reformation with and without hormonal treatment and the ideal dosing regimen or length of estrogen therapy is not known. The absence of prospective RCTs comparing treatment methods makes it difficult to recommend optimal treatment protocols. Furthermore, diagnostic severity and outcomes are assessed according to different criteria (e.g. menstrual pattern, adhesion reformation rate, conception rate, live birth rate). Clearly, more comparable studies are needed in which reproductive outcome can be analysed systematically.
Follow-up tests (HSG, hysteroscopy or SHG) are necessary to ensure that adhesions have not reformed. Further surgery may be necessary to restore a normal uterine cavity.
According to a recent study among 61 patients, the overall rate of adhesion recurrence was 27.9% and in severe cases this was 41.9%. Another study found that postoperative adhesions reoccur in close to 50% of severe AS and in 21.6% of moederate cases. Mild IUA, unlike moderate to severe synechiae, do not appear to reform.
A placental disease is any disease, disorder, or pathology of the placenta. The article also covers placentation abnormalities, which is often used synonymously for placental disease.
Ideally the management of abdominal pregnancy should be done by a team that has medical personnel from multiple specialties. Potential treatments consist of surgery with termination of the pregnancy (removal of the fetus) via laparoscopy or laparotomy, use of methotrexate, embolization, and combinations of these. Sapuri and Klufio indicate that conservative treatment is also possible if the following criteria are met: 1. there are no major congenital malformations; 2. the fetus is alive; 3. there is continuous hospitalization in a well-equipped and well-staffed maternity unit which has immediate blood transfusion facilities; 4. there is careful monitoring of maternal and fetal well being; and 5. placental implantation is in the lower abdomen away from the liver and spleen. The choice is largely dictated by the clinical situation. Generally, treatment is indicated when the diagnosis is made; however, the situation of the advanced abdominal pregnancy is more complicated.
Principles of management are to treat the shock and replace the uterus. The patient should be moved rapidly to the OR to facilitate anesthesia monitoring during this procedure. Usually this complication is only recognized after delivery of the placenta, wherein pitocin has already been started, which just exacerbates the problem. The uterus clamps down around the inversion making it very difficult to perform a replacement. This is a true obstetrical emergency, so extra doctors, nurses, anesthesiologists should be summoned to the room to assist. The pitocin should be turned off immediately. Giving tocolytics such as terbutaline or magnesium sulfate have a lower success rate. Halothane and Nitroglycerine (100mcg to 200 mcg intravenously) have a higher success rate.
Once you have achieved uterine relaxation, place your fist into the vagina. Find the biggest part of the inversion and push with your fist cephalward to replace the uterus. This takes firm steady force, so keep your fist in the vagina if you need to rest your hand. Then continue more force toward the fundus to replace the uterus. You can use your left hand on the outside of the abdomen to help you feel where the fundus should be replaced. This helps guide the angle of your fist in replacing the uterus. Once it is replaced, give the patient Misoprostol 1000 mcgs rectally to help with increasing uterine tone. Other medications such as Methergine and Hemabate can be used. If you have heavy bleeding, consider inserting a Bakri balloon into the uterine cavity to tamponade the bleeding.
These patients have usually sustained heavy blood loss, and should be monitored in the ICU postoperatively. If you have given nitroglycerine, they must have cardiac monitoring postoperatively.
Other personnel should be monitoring vital signs, ordering blood products, assisting the anesthesiologist, drawing labs, and stabilizing the patient. Remember that nitroglycerine can cause hypotension, which can be reversed with ephedrine.
If external replacement fails, a laparotomy may be required, in which the uterus is gently pulled the right way round using forceps.
There is no effective pharmacological treatment for retained placenta. It is useful ensuring the bladder is empty. However, ergometrine should not be given as it causes tonic uterine contractions which may delay placental expulsion. Controlled cord traction has been recommended as a second alternative after more than 30 minutes have passed after stimulation of uterine contractions, provided the uterus is contracted. Manual extraction may be required if cord traction also fails, or if heavy ongoing bleeding occurs. Very rarely a curettage is necessary to ensure that no remnants of the placenta remain (in rare conditions with very adherent placenta such as a placenta accreta).
However, in birth centers and attended home birth environments, it is common for licensed care providers to wait for the placenta's birth up to 2 hours in some instances.
A Cochrane review concluded that "simple maternal hydration appears to increase amniotic fluid volume and may be beneficial in the management of oligohydramnios and prevention of oligohydramnios during labour or prior to external cephalic version."
In severe cases oligohydramnios may be treated with amnioinfusion during labor to prevent umbilical cord compression. There is uncertainty about the procedure's safety and efficacy, and it is recommended that it should only be performed in centres specialising in invasive fetal medicine and in the context of a multidisciplinary team.
In case of congenital lower urinary tract obstruction, fetal surgery seems to improve survival, according to a randomized yet small study.
The method of delivery is determined by clinical state of the mother, fetus and ultrasound findings. In minor degrees (traditional grade I and II), vaginal delivery is possible. RCOG recommends that the placenta should be at least 2 cm away from internal os for an attempted vaginal delivery. When a vaginal delivery is attempted, consultant obstetrician and anesthetists are present in delivery suite. In cases of fetal distress and major degrees (traditional grade III and IV) a caesarean section is indicated. Caesarian section is contraindicated in cases of disseminated intravascular coagulation. An obstetrician may need to divide the anterior lying placenta. In such cases, blood loss is expected to be high and thus blood and blood products are always kept ready. In rare cases, hysterectomy may be required.
The uterus should be evacuated and contractions should be stimulated using intravenous oxytocin; hysterectomy (the removal of the uterus) may be needed in some cases.
Treatment depends on the amount of blood loss and the status of the fetus. If the fetus is less than 36 weeks and neither mother or fetus is in any distress, then they may simply be monitored in hospital until a change in condition or fetal maturity whichever comes first.
Immediate delivery of the fetus may be indicated if the fetus is mature or if the fetus or mother is in distress. Blood volume replacement to maintain blood pressure and blood plasma replacement to maintain fibrinogen levels may be needed. Vaginal birth is usually preferred over Caesarean section unless there is fetal distress. Caesarean section is contraindicated in cases of disseminated intravascular coagulation. People should be monitored for 7 days for postpartum hemorrhage. Excessive bleeding from uterus may necessitate hysterectomy. The mother may be given Rhogam if she is Rh negative.
Intravenous oxytocin is the drug of choice for postpartum hemorrhage. Ergotamine may also be used.
Oxytocin helps the uterus to contract quickly and the contractions to last for longer. It is the first line treatment for PPH when its cause is the uterus not contracting well. A combination of syntocinon and ergometrine is commonly used as part of active management of the third stage of labour. This is called syntometrine. Syntocinon alone lowers the risk of PPH. Based on limited research available it is unclear whether syntocinon or syntometrine is most effective in preventing PPH but adverse effects are worse with syntometrine making syntocinon a more attractive option. Ergometrine also has to be kept cool and in a dark place so that it is safe to use. It does reduce the risk of PPH by improving the tone of the uterus when compared with no treatment however it has to be used with caution due to its effect raising blood pressure and causing worse after pains.
More research would be useful in determining the best doses of ergometrine, and syntocinon.
The difficulty using oxytocin is that it needs to be kept below a certain temperature which requires resources such as fridges which are not always available particularly in low-resourced settings. When oxytocin is not available, misoprostol can be used. Misoprostol does not need to be kept at a certain temperature and research into its effectiveness in reducing blood loss appears promising when compared with a placebo in a setting where it is not appropriate to use oxytocin. Misoprostol can cause unpleasant side effects such as very high body temperatures and shivering. Lower doses of misoprostol appear to be safer and cause less side effects.
Giving oxytocin in a solution of saline into the umbilical vein is a method of administering the drugs directly to the placental bed and uterus. However quality of evidence around this technique is poor and it is not recommended for routine use in the management of the third stage. More research is needed to ascertain whether this is an effective way of administering uterotonic drugs. As a way of treating a retained placenta, this method is not harmful but has not been shown to be effective.
Carbetocin compared with oxytocin produced a reduction in women who needed uterine massage and further uterotonic drugs for women having caesarean sections. There was no difference in rates of PPH in women having caesarean sections or women having vaginal deliveries when given carbetocin. Carbetocin appears to cause less adverse effects. More research is needed to find the cost effectiveness of using carbetocin.
Tranexamic acid, a medication to promote blood clotting, may also be used to reduce bleeding and blood transfusions in low-risk women, however evidence as of 2015 was not strong. A 2017 trial found that it decreased the risk of death from bleeding from 1.9% to 1.5% in women with postpartum bleeding. The benefit was greater when the medication was given within three hours.
In some countries, such as Japan, methylergometrine and other herbal remedies are given following the delivery of the placenta to prevent severe bleeding more than a day after the birth. However, there is not enough evidence to suggest that these methods are effective.
This procedure involves removal of amniotic fluid periodically throughout the pregnancy under the assumption that the extra fluid in the recipient twin can cause preterm labor, perinatal mortality, or tissue damage. In the case that the fluid does not reaccumulate, the reduction of amniotic fluid stabilizes the pregnancy. Otherwise the treatment is repeated as necessary. There is no standard procedure for how much fluid is removed each time. There is a danger that if too much fluid is removed, the recipient twin could die. This procedure is associated with a 66% survival rate of at least one fetus, with a 15% risk of cerebral palsy and average delivery occurring at 29 weeks gestation.
This procedure involves the tearing of the dividing membrane between fetuses such that the amniotic fluid of both twins mixes under the assumption that pressure is different in either amniotic sac and that its equilibration will ameliorate progression of the disease. It has not been proven that pressures are different in either amniotic sac. Use of this procedure can preclude use of other procedures as well as make difficult the monitoring of disease progression. In addition, tearing the dividing membrane has contributed to cord entanglement and demise of fetuses through physical complications.
The World Health Organization recommends that women with severe hypertension during pregnancy should receive treatment with anti-hypertensive agents. Severe hypertension is generally considered systolic BP of at least 160 or diastolic BP of at least 110. Evidence does not support the use of one anti-hypertensive over another. The choice of which agent to use should be based on the prescribing clinician's experience with a particular agent, its cost, and its availability. Diuretics are not recommended for prevention of preeclampsia and its complications. Labetolol, Hydralazine and Nifedipine are commonly used antihypertensive agents for hypertension in pregnancy. ACE inhibitors and angiotensin receptor blockers are contraindicated as they affect fetal development.
The goal of treatment of severe hypertension in pregnancy is to prevent cardiovascular, kidney, and cerebrovascular complications. The target blood pressure has been proposed to be 140–160 mmHg systolic and 90–105 mmHg diastolic, although values are variable.
An initial assessment to determine the status of the mother and fetus is required. Although mothers used to be treated in the hospital from the first bleeding episode until birth, it is now considered safe to treat placenta previa on an outpatient basis if the fetus is at less than 30 weeks of gestation, and neither the mother nor the fetus are in distress. Immediate delivery of the fetus may be indicated if the fetus is mature or if the fetus or mother are in distress. Blood volume replacement (to maintain blood pressure) and blood plasma replacement (to maintain fibrinogen levels) may be necessary.
Corticosteroids are indicated at 24–34 weeks gestation, given the higher risk of premature birth.