Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The objective of irradiation is to halt the growth of the acoustic neuroma tumour, it does not excise it from the body, as the term 'radiosurgery' or 'gammaknife' implies. Radiosurgery is only suitable for small to medum size tumors.
Surgical removal of tumors is an option, however the risks involved should be assessed first. With regard to OPG (optic pathway gliomas), the preferred treatment is chemotherapy. However, radiotherapy isn't recommended in children who present with this disorder. It is recommended that children diagnosed with NF1 at an early age have an examination each year, which allows any potential growths or changes related to the disorder to be monitored.
Acoustic neuromas are managed by either surgery, radiation therapy, or observation with regular MRI scanning. With treatment, the likelihood of hearing preservation varies inversely with the size of the tumor; for large tumors, preservation of hearing is rare. Because acoustic neurmas, meningiomas and most other CPA tumors are benign, slow growing or non-growing, and non-invasive, observation is a viable management option.
Systemic (intravenous or oral) chemotherapy and intrathecal chemotherapy: Intrathecal therapy is when injection is done directly to the spinal cord into the sub-arachnoid space to avoid the Blood-Brain-Barrier (BBB) and gain direct access to the CSF. Intrathecal Therapy is preferred since intravenous chemotherapy do not penetrate the BBB. The most common chemicals used are liposomal cytarabine (DepoCyte) and intrathecal methotrexate (MTX).
In combination, intrathecal chemotherapy most often comprises methotrexate, cytarabine, thiotepa and steroids. Ventriculoperitoneal shunts may also be applied with chemotherapy to avoid invasive surgery to gain access to the CSF.
An example of treatment:
Intrathecal MTX injection at a dose of 15 mg/day for 5 days every other week with hydrocortisone acetate injecting IT on day one to prevent arachnoiditis, the inflammation of the arachnoid. MTX administration is continued until neurological progression or relapse occurred. Systemic chemotherapy, radiotherapy, and surgery are performed depending on the need of the patient.
Risks of treatments:
Both Chemotherapy and Radiotherapy are harmful to the body and most definitely the brain. Caution must be utilized in treating patients with NM. Another factor that makes treatment difficult is that there is no suitable method to evaluate the disease progression.
There are three treatment options available to a patient. These options are observation, microsurgical removal and radiation (radiosurgery or radiotherapy). Determining which treatment to choose involves consideration of many factors including the size of the tumor, its location, the patient's age, physical health and current symptoms. About 25% of all acoustic neuromas are treated with medical management consisting of a periodic monitoring of the patient's neurological status, serial imaging studies, and the use of hearing aids when appropriate.
One of the last great obstacles in the management of acoustic neuromas is hearing preservation and/or rehabilitation after hearing loss. Hearing loss is both a symptom and concommitant risk, regardless of the treatment option chosen.
Treatment does not restore hearing already lost, though there are a few rare cases of hearing recovery reported.
A diagnosis of NF2 related bilateral acoustic neuromas creates the possibility of complete deafness if the tumors are left to grow unchecked. Preventing or treating the complete deafness that may befall individuals with NF2 requires complex decision making. The trend at most academic U.S. medical centers is to recommend treatment for the smallest tumor which has the best chance of preserving hearing. If this goal is successful, then treatment can also be offered for the remaining tumor. If hearing is not preserved at the initial treatment, then usually the second tumor, in the only-hearing ear, is just observed. If it shows continued growth and becomes life-threatening, or if the hearing is lost over time as the tumor grows, then treatment is undertaken. This strategy has the highest chance of preserving hearing for the longest time possible.
Treatment typically consists of radiotherapy and steroids for palliation of symptoms. Radiotherapy may result in minimally extended survival time. Prognosis is very poor, with only 37% of treated patients surviving one year or more. Topotecan has been studied in the treatment of brainstem glioma, otherwise, chemotherapy is probably ineffective, though further study is needed.
Radiotherapy alone is reserved only for small lesions not appropriate for either surgery or chemotherapy. Both photon and proton radiotherapy have been used effectively to treat esthesioneuroblastoma. Proton radiotherapy has recently been shown to be effective in a 10-person study with Kadish C tumors, while delivering less toxicity to the nervous system.
The preferred treatment for esthesioneuroblastoma is surgery followed by radiotherapy to prevent reoccurrence of the tumor.
There is no standard treatment that has been established for NM thus treatments are almost always palliative.
Radiotherapy:
This method is used mostly for focal type of NM due to the nature of damage and success rate associated with the treatment. Radiotherapy targets and tumor and destroys the collective tissues of cancerous cells.
Since acoustic neuromas tend to be slow-growing and are benign tumors, careful observation over a period of time may be appropriate for some patients. When a small tumor is discovered in an older patient, observation to determine the growth rate of the tumor may be indicated if serious symptoms are not present. There is now good evidence from large observational studies that suggest many small tumors in older individuals do not grow, thus allowing tumors with no growth to be observed successfully. If the tumor grows, treatment may become necessary.
Another example of a group of patients for whom observation may be indicated includes patients with a tumor in their only hearing or better hearing ear, particularly when the tumor is of a size that hearing preservation with treatment would be unlikely. In this group of patients, MRI is used to follow the growth pattern. Treatment is recommended if either the hearing is lost or the tumor size becomes life-threatening, thus allowing the patient to retain hearing for as long as possible.
Current studies suggest surgeons should observe small acoustic neuromas (those 1.5 cm or less).
Over a period of 10 years of observation with no treatment, 45% of patients with small tumors (and therefore minimal symptoms) lose functional hearing on the affected side; this percentage is considerably higher than that for patients actively treated with hearing-preserving microsurgery or radiosurgery.
The main treatment modalities are surgery, embolization and radiotherapy.
There are several different surgical techniques for the removal of acoustic neuroma. The choice of approach is determined by size of the tumour, hearing capability, and general clinical condition of the patient.
- The retrosigmoid approach offers some opportunity for the retention of hearing.
- The translabyrinthine approach will sacrifice hearing on that side, but will usually spare the facial nerve. Post-operative cerebrospinal fluid leaks are more common.
- The middle fossa approach is preferred for small tumours, and offers the highest probability of retention of hearing and vestibular function.
- Less invasive endoscopic techniques have been done outside of the United States for some time. Recovery times are reported to be faster. However, this technique is not yet mainstream among surgeons in the US.
Larger tumors can be treated by either the translabyrinthine approach or the retrosigmoid approach, depending upon the experience of the surgical team. With large tumors, the chance of hearing preservation is small with any approach. When hearing is already poor, the translabyrinthine approach may be used for even small tumors. Small, lateralized tumours in patients with good hearing should have the middle fossa approach. When the location of the tumour is more medial a retrosigmoid approach may be better.
Auditory canal decompression is another surgical technique that can prolong usable hearing when a vestibular schwannoma has grown too large to remove without damage to the cochlear nerve. In the IAC (internal auditory canal) decompression, a middle fossa approach is employed to expose the bony roof of the IAC without any attempt to remove the tumor. The bone overlying the acoustic nerve is removed, allowing the tumour to expand upward into the middle cranial fossa. In this way, pressure on the cochlear nerve is relieved, reducing the risk of further hearing loss from direct compression or obstruction of vascular supply to the nerve.
Radiosurgery is a conservative alternative to cranial base or other intracranial surgery. With conformal radiosurgical techniques, therapeutic radiation focused on the tumour, sparing exposure to surrounding normal tissues. Although radiosurgery can seldom completely destroy a tumor, it can often arrest its growth or reduce its size. While radiation is less immediately damaging than conventional surgery, it incurs a higher risk of subsequent malignant change in the irradiated tissues, and this risk in higher in NF2 than in sporadic (non-NF2) lesions.
Treatment for brain gliomas depends on the location, the cell type, and the grade of malignancy. Often, treatment is a combined approach, using surgery, radiation therapy, and chemotherapy. The radiation therapy is in the form of external beam radiation or the stereotactic approach using radiosurgery. Spinal cord tumors can be treated by surgery and radiation. Temozolomide, a chemotherapeutic drug, is able to cross the blood–brain barrier effectively and is currently being used in therapy for high-grade tumors.
For recurrent high-grade glioblastoma, recent studies have taken advantage of angiogenic blockers such as bevacizumab in combination with conventional chemotherapy, with encouraging results.
A 2009 clinical trial at Massachusetts General Hospital used the cancer drug Bevacizumab (commercial name: Avastin) to treat 10 patients with neurofibromatosis type II. The result was published in "The New England Journal of Medicine". Of the ten patients treated with bevacizumab, tumours shrank in 9 of them, with the median best response rate of 26%. Hearing improved in some of the patients, but improvements were not strongly correlated with tumour shrinkage. Bevacizumab works by cutting the blood supply to the tumours and thus depriving them of their growth vector. Side effects during the study included alanine aminotransferase, proteinuria, and hypertension (elevated blood pressure) among others. A separate trial, published in "The Neuro-oncology Journal", show 40% tumour reduction in the two patients with NF2, along with significant hearing improvement.
Overall the researchers believed that bevacizumab showed clinically significant effects on NF-2 patients. However, more research is needed before the full effects of bevacizumab can be established in NF-2 patients.
A trial of the anticonvulsant drug carbamazepine is common for patients diagnosed with GN. For patients who do not tolerate or respond to carbamazepine, alternative drugs include oxcarbazepine, gabapentin, phenytoin, lamotrigine, and baclofen. In addition, tricyclics (e.g., amitriptyline) and pregabalin are useful in other types of neuropathic pain.
The best-studied medical treatment for intracranial hypertension is acetazolamide (Diamox), which acts by inhibiting the enzyme carbonic anhydrase, and it reduces CSF production by six to 57 percent. It can cause the symptoms of hypokalemia (low blood potassium levels), which include muscle weakness and tingling in the fingers. Acetazolamide cannot be used in pregnancy, since it has been shown to cause embryonic abnormalities in animal studies. Also, in human beings it has been shown to cause metabolic acidosis as well as disruptions in the blood electrolyte levels of newborn babies. The diuretic furosemide is sometimes used for a treatment if acetazolamide is not tolerated, but this drug sometimes has little effect on the ICP.
Various analgesics (painkillers) may be used in controlling the headaches of intracranial hypertension. In addition to conventional agents such as paracetamol, a low dose of the antidepressant amitriptyline or the anticonvulsant topiramate have shown some additional benefit for pain relief.
The use of steroids in the attempt to reduce the ICP is controversial. These may be used in severe papilledema, but otherwise their use is discouraged.
Nasopharyngeal carcinoma can be treated by surgery, by chemotherapy, or by radiotherapy. The expression of EBV latent proteins within undifferentiated nasopharyngeal carcinoma can be potentially exploited for immune-based therapies.
As diagnostic criteria have been indecisive and its pathophysiology remains unclear, no permanent cure is available. Antiepileptic medications (membrane-stabilizing drugs) such as pregabalin, gabapentin, topiramate, and lamotrigine improve symptoms, but there is no effective permanent or long-term treatment for SUNCT.
However, a few short-term treatments are available and can relieve and possibly prevent some symptoms of attacks.
Lamotrigine exhibits some long-term prevention and reduction in many patients; however, titration of dose is difficult due to adverse skin reactions.
Topiramate also has preventive effects but it is accompanied by a high risk of severe side-effects for patients with a history of kidney stones, glaucoma, depression, or low body weight.
Intravenous lidocaine can abolish symptoms during its administration, or reduce frequency and duration of attacks. However, administration of intravenous lidocaine requires careful monitoring of ECG and blood pressure.
Methylprednisolone therapy shows some promise in short-term prevention of attacks, even though its mechanism of action is yet to be discovered.
The calcium channel blocker verapamil is reported to be useful in alleviating symptoms (lower frequency and duration of attacks), even though some patients experience worsened symptoms.
Various medications that are often used in other headache syndromes such as nonsteroidal anti-inflammatory drugs, acetaminophen, tricyclic antidepressants, calcium channel antagonists do not relieve the symptoms of SUNCT.
There have been attempts to alter oxygen supply during attacks to alleviate the symptoms since some of the headaches are caused by decreased oxygen supply; however, elevated blood oxygen level did not affect the symptoms.
Researchers now focus on the administration of various combination of medications and therapies to treat symptoms of SUNCT.
The first step in symptom control is drainage of cerebrospinal fluid by lumbar puncture. If necessary, this may be performed at the same time as a diagnostic LP (such as done in search of a CSF infection). In some cases, this is sufficient to control the symptoms, and no further treatment is needed.
The procedure can be repeated if necessary, but this is generally taken as a clue that additional treatments may be required to control the symptoms and preserve vision. Repeated lumbar punctures are regarded as unpleasant by patients, and they present a danger of introducing spinal infections if done too often. Repeated lumbar punctures are sometimes needed to control the ICP urgently if the patient's vision deteriorates rapidly.
Botulinum toxin is highly effective in the treatment of hemifacial spasm. It has a success rate equal to that of surgery, but repeated injections may be required every 3 to 6 months. The injections are administered as an outpatient or office procedure. Whilst side effects occur, these are never permanent. Repeated injections over the years remain highly effective. Whilst the toxin is expensive, the cost of even prolonged courses of injections compares favourably with the cost of surgery. Patients with HFS should be offered a number of treatment options. Very mild cases or those who are reluctant to have surgery or Botulinum toxin injections can be offered medical treatment, sometimes as a temporary measure. In young and fit patients microsurgical decompression and Botulinum injections should be discussed as alternative procedures. In the majority of cases, and especially in the elderly and the unfit, Botulinum toxin injection is the treatment of first choice. Imaging procedures should be done in all unusual cases of hemifacial spasm and when surgery is contemplated. Patients with hemifacial spasm were shown to have decreased sweating after botulinum toxin injections. This was first observed in 1993 by Khalaf Bushara and David Park. This was the first demonstration of nonmuscular use of BTX-A. Bushara further showed the efficacy of botulinum toxin in treating hyperhidrosis (excessive sweating). BTX-A was later approved for the treatment of excessive underarm sweating. This is technically known as severe primary axillary hyperhidrosis – excessive underarm sweating with an unknown cause which cannot be managed by topical agents (see focal hyperhidrosis).
There is no known cure to BVVL however a Dutch group have reported the first promising attempt at treatment of the disorder with high doses of riboflavin. This Riboflavin protocol seems to be beneficial in almost all cases. Specialist medical advice is of course essential to ensure the protocol is understood and followed correctly.
Patients will almost certainly require additional symptomatic treatment and supportive care. This must be specifically customized to the needs of the individual but could include mobility aids, hearing aids or cochlear implants, vision aids, gastrostomy feeding and assisted ventilation, while steroids may or may not help patients.
The first report of BVVL syndrome in Japanese literature was of a woman that had BVVL and showed improvement after such treatments. The patient was a sixty-year-old woman who had symptoms such as sensorineural deafness, weakness, and atrophy since she was 15 years old. Around the age of 49 the patient was officially diagnosed with BVVL, incubated, and then attached to a respirator to improve her CO2 narcosis. After the treatments, the patient still required respiratory assistance during sleep; however, the patient no longer needed assistance by a respirator during the daytime.
Mild cases of hemifacial spasm may be managed with sedation or carbamazepine (an anticonvulsant drug). Microsurgical decompression and botulinum toxin injections are the current main treatments used for hemifacial spasm.
A schwannoma is a usually-benign nerve sheath tumor composed of Schwann cells, which normally produce the insulating myelin sheath covering peripheral nerves.
A combination of lifestyle modifications and medications can be used for the treatment of dolichoectasias.
- Antihypertensive medications such as Thiazides, Beta Blocker, ACE Inhibitor
- Trental or other Pentoxifylline drugs
- Dietary changes
- Weight loss
- Regular exercise