Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
On April 27, 2017, the U.S. Food and Drug Administration approved Brineura (cerliponase alfa) as the first specific treatment for NCL. Brineura is enzyme replacement therapy manufactured through recombinant DNA technology. The active ingredient in Brineura, cerliponase alpha, is intended to slow loss of walking ability in symptomatic pediatric patients 3 years of age and older with late infantile neuronal ceroid lipofuscinosis type 2 (CLN2), also known as tripeptidyl peptidase-1 (TPP1) deficiency. Brineura is administered into the cerebrospinal fluid by infusion via a surgically implanted reservoir and catheter in the head (intraventricular access device).
A painkiller available in several European countries, Flupirtine, has been suggested to possibly slow down the progress of NCL, particularly in the juvenile and late infantile forms. No trial has been officially supported in this venue, however. Currently the drug is available to NCL families either from Germany, Duke University Medical Center in Durham, North Carolina, and the Hospital for Sick Children in Toronto, Ontario.
Currently treatment is only symptomatic and palliative. Treatment for manifestations, such as seizures, dystonia, sleep disorders, depression and anxiety, can be effectively managed. Physical and occupational therapy is recommended to help patients retain fine motor function for as long as possible Recent progress has been made in the application of enzyme-replacement, gene, and stem cell therapies for patients.
There is no cure for Salla disease. Treatment is limited to controlling the symptoms of this disorder. Anti-convulsant medication may control seizure episodes. Physical therapists can assist an affected individual to build muscle strength and coordination.
Cardiac and respiratory complications are treated symptomatically. Physical and occupational therapy may be beneficial for some patients. Alterations in diet may provide temporary improvement but will not alter the course of the disease. Genetic counseling can provide families with information regarding risk in future pregnancies.
On April 28, 2006 the US Food and Drug Administration approved a Biologic License Application (BLA) for Myozyme (alglucosidase alfa, rhGAA), the first treatment for patients with Pompe disease, developed by a team of Duke University researchers. This was based on enzyme replacement therapy using biologically active recombinant human alglucosidase alfa produced in Chinese Hamster Ovary cells. Myozyme falls under the FDA Orphan Drug designation and was approved under a priority review.
The FDA has approved Myozyme for administration by intravenous infusion of the solution. The safety and efficacy of Myozyme were assessed in two separate clinical trials in 39 infantile-onset patients with Pompe disease ranging in age from 1 month to 3.5 years at the time of the first infusion. Myozyme treatment clearly prolongs ventilator-free survival and overall survival. Early diagnosis and early treatment leads to much better outcomes. The treatment is not without side effects which include fever, flushing, skin rash, increased heart rate and even shock; these conditions, however, are usually manageable.
Myozyme costs an average of US$300,000 a year and must be taken for the patients' entire life, so some American insurers have refused to pay for it. On August 14, 2006, Health Canada approved Myozyme for the treatment of Pompe disease. On June 14, 2007 the Canadian Common Drug Review issued their recommendations regarding public funding for Myozyme therapy. Their recommendation was to provide funding to treat a very small subset of Pompe patients (Infants less one year of age with cardiomyopathy). Genzyme received broad approval in the European Union. On May 26, 2010 FDA approved Lumizyme, a similar version of Myozyme, for the treament of late-onset Pompe disease.
A new treatment option for this disease is called Lumizyme. Lumizyme and Myozyme have the same generic ingredient (Alglucosidase Alfa) and manufacturer (Genzyme Corporation). The difference between these two products is in the manufacturing process. Today, the Myozyme is made using a 160-L bioreactor, while the Lumizyme uses a 4000-L bioreactor. Because of the difference in the manufacturing process, the FDA claims that the two products are biologically different. Moreover, Lumizyme is FDA approved as replacement therapy for late-onset (noninfantile) Pompe disease without evidence of cardiac hypertrophy in patients 8 years and older. Myozyme is FDA approved for replacement therapy for infantile-onset Pompe disease.
Recent studies on chaperone molecules to be used with myozyme are starting to show promising results on animal models.
No cures for lysosomal storage diseases are known, and treatment is mostly symptomatic, although bone marrow transplantation and enzyme replacement therapy (ERT) have been tried with some success. ERT can minimize symptoms and prevent permanent damage to the body. In addition, umbilical cord blood transplantation is being performed at specialized centers for a number of these diseases. In addition, substrate reduction therapy, a method used to decrease the production of storage material, is currently being evaluated for some of these diseases. Furthermore, chaperone therapy, a technique used to stabilize the defective enzymes produced by patients, is being examined for certain of these disorders. The experimental technique of gene therapy may offer cures in the future.
Ambroxol has recently been shown to increase activity of the lysosomal enzyme glucocerebrosidase, so it may be a useful therapeutic agent for both Gaucher disease and Parkinson's disease. Ambroxol triggers the secretion of lysosomes from cells by inducing a pH-dependent calcium release from acidic calcium stores. Hence, relieving the cell from accumulating degradation products is a proposed mechanism by which this drug may help.
Batten disease is a terminal illness; the FDA has approved Brineura (cerliponase alfa) as a treatment for a specific form of Batten disease. Brineura is the first FDA-approved treatment to slow loss of walking ability (ambulation) in symptomatic pediatric patients 3 years of age and older with late infantile neuronal ceroid lipofuscinosis type 2 (CLN2), also known as tripeptidyl peptidase-1 (TPP1) deficiency. Palliative treatment is symptomatic and supportive.
As of 2010 there was no treatment that addressed the cause of Tay–Sachs disease or could slow its progression; people receive supportive care to ease the symptoms and extend life by reducing the chance of contracting infections. Infants are given feeding tubes when they can no longer swallow. In late-onset Tay–Sachs, medication (e.g., lithium for depression) can sometimes control psychiatric symptoms and seizures, although some medications (e.g., tricyclic antidepressants, phenothiazines, haloperidol, and risperidone) are associated with significant adverse effects.
Treatment: There is no treatment or way to reverse the disease. Treatment will focus on the symptoms an individual has, such as seizure medication.
- It is possible that if an individual receives a bone marrow transplant, they could receive healthy bone marrow cells which would produce normal amounts of fucosidase. But there not is enough research to prove this is an effective treatment.
There is no cure for congenital alpha-mannosidosis. Treatment is limited to reducing or controlling the symptoms of this disorder by, for example, taking medication to control seizures, using a hearing aid to assist with hearing loss, and by having routine physical therapy to assist with muscular pain and weakness. In some cases, a wheelchair is recommended if muscle or spinal impairments immobilize the individual affected. Despite early reports to the contrary, bone marrow transplants performed at an early age have shown promise in halting the progression of this disorder.
There are no specific treatments for lipid storage disorders; however, there are some highly effective enzyme replacement therapies for people with type 1 Gaucher disease and some patients with type 3 Gaucher disease. There are other treatments such as the prescription of certain drugs like phenytoin and carbamazepine to treat pain for patients with Fabry disease. Furthermore, gene thereapies and bone marrow transplantation may prove to be effective for certain lipid storage disorders. Diet restrictions do not help prevent the buildup of lipids in the tissues.
There is no cure for Pseudo-Hurler Polydystrophy/Mucolipidosis IIIA. Treatment is limited to controlling or reducing symptoms associated with this disorder. Physio-therapy, particularly hydrotherapy has proven effective at relieving muscle stiffness and increasing mobility. The use of crutches, a wheelchair or scooters are treatment options as the metabolic bone disease progresses. The insertion of rods in the spine to stabilize the vulnerable areas can treat scoliosis. Heart valve replacement surgery may be necessary as this disorder progresses.
Treatment is limited. Drugs can alleviate the symptoms, such as sleep difficulties and epilepsy. Physiotherapy helps affected children retain the ability to remain upright for as long as possible, and prevents some of the pain.
Recent attempts to treat INCL with cystagon have been unsuccessful.
As of 2015 there was no cure for APDB, instead symptoms are managed. There are various approaches to managing neurogenic bladder dysfunction, physical therapy and mobility aids to help with walking, and dementia can be managed with occupational therapy, counseling and drugs.
Vestronidase alfa-vjbk (Mepsevii) is the only drug approved by U.S. Food and Drug Administration for the treatment of pediatric and adult patients.
The prognosis for individuals with Pompe disease varies according to the onset and severity of symptoms. Without treatment the disease is particularly lethal in infants and young children.
Myozyme (alglucosidase alfa) is a recombinant form of the human enzyme acid alpha-glucosidase, and is also currently being used to replace the missing enzyme. In a study which included the largest cohort of patients with Pompe disease treated with enzyme replacement therapy (ERT) to date findings showed that Myozyme treatment clearly prolongs ventilator-free survival and overall survival in patients with infantile-onset Pompe disease as compared to an untreated historical control population. Furthermore, the study demonstrated that initiation of ERT prior to 6 months of age, which could be facilitated by newborn screening, shows great promise to reduce the mortality and disability associated with this devastating disorder. Taiwan and several states in the United States have started the newborn screening and results of such regimen in early diagnosis and early initiation of the therapy have dramatically improved the outcome of the disease; many of these babies have reached the normal motor developmental milestones.
Another factor affecting the treatment response is generation of antibodies against the infused enzyme, which is particularly severe in Pompe infants who have complete deficiency of the acid alpha-glucosidase. Immune tolerance therapy to eliminate these antibodies has improved the treatment outcome.
A Late Onset Treatment Study (LOTS) was published in 2010. The study was undertaken to evaluate the safety and efficacy of aglucosidase alfa in juvenile and adult patients with Pompe disease. LOTS was a randomized, double-blind, placebo-controlled study that enrolled 90 patients at eight primary sites in the United States and Europe. Participants received either aglucosidase alfa or a placebo every other week for 18 months. The average age of study participants was 44 years. The primary efficacy endpoints of the study sought to determine the effect of Myozyme on functional endurance as measured by the six-minute walk test and to determine the effect of aglucosidase alfa on pulmonary function as measured by percent predicted forced vital capacity.
The results showed that, at 78 weeks, patients treated with aglucosidase alfa increased their distance walked in six minutes by an average of approximately 25 meters as compared with the placebo group which declined by 3 meters (P=0.03). The placebo group did not show any improvement from baseline. The average baseline distance walked in six minutes in both groups was approximately 325 meters.
Percent predicted forced vital capacity in the group of patients treated with aglucosidase alfa increased by 1.2 percent at 78 weeks. In contrast, it declined by approximately 2.2 percent in the placebo group (P=0.006).
Current available treatment is limited to treating the symptoms, not the cause. Seizure frequency can be regulated by the use of drugs such as Clonazepam (or other benzodiazepines) and Sodium Valproate. Clonazepam functions by increasing GABA activity at the GABA receptor. GABA is an inhibitory neurotransmitter and therefore, its increased activity hyperpolarizes cells. Clonazepam has been effective in minimising seizure activity, especially during puberty. Sodium valproate prevents the depolarization of the cell by blocking sodium ion channels and inhibitory GABA enzymes. Both of these anticonvulsants lead to depression of the central nervous system.
While there is no cure for HPS, treatment for chronic hemorrhages associated with the disorder includes therapy with vitamin E and the antidiuretic dDAVP.
There is no treatment for ISSD. Treatment is limited to controlling the symptoms of this disorder such as administering anti-convulsant medication to control seizure episodes.
The management of Glycogen storage disease IX requires treatment of symptoms by frequent intake of complex carbohydrates and protein to combat the low blood sugar. A nutritionist will advise on suitable diets. Liver function is regularly monitored and problems managed as they arise. However, liver problems have only been successfully treated by a transplant. Routine checks of metabolism are needed to ensure blood sugar (glucose) and ketones are managed. Regular moderate exercise is beneficial, although over-vigorous exercise is to be avoided, especially in those with enlarged livers.
As of 2010, even with the best care, children with infantile Tay–Sachs disease usually die by the age of 4.
No specific treatment is known for type A, but symptoms are treated.
In adult patients with type B, physicians try to keep cholesterol levels down to normal levels. If statins are used, they monitor liver function. If the spleen is enlarged and platelet levels low, acute episodes of bleeding may require transfusions of blood products. If they have symptoms of interstitial lung disease, they may need oxygen.
Anecdotally, organ transplant has been attempted with limited success. Future prospects include enzyme replacement and gene therapy. Bone marrow transplant has been tried for type B.
In January 2009, Actelion announced the drug miglustat (Zavesca) had been approved in the European Union for the treatment of progressive neurological manifestations in adult patients and pediatric patients with NPC. The drug is available to patients in the United States on an experimental basis. In March 2010, the FDA requested additional preclinical and clinical information regarding Zavesca from Actelion before making a final decision on approving the drug in the United States for NPC.
Due to the nature of the illness, and absence of a really efficient treatment, it is important to emphasize the need for extensive palliative treatment against the diverse symptoms. Their objective is to reduce the effects of the deterioration of many bodily functions. In light of the diversity of symptoms, it is quite common to use a wide spectrum of palliative strategies where surgery and therapies are often pivotal.
Idursulfase, a purified form of the lysosomal enzyme iduronate-2-sulfatase produced by recombinant DNA technology in a human cell line, underwent clinical trial in 2006 and was subsequently approved by the United States Food and Drug Administration as an enzyme replacement treatment for Hunter syndrome. See the "External links" below for two sites that provide extensive information about the enzyme idursulfase, which is sold commercially as Elaprase.
Idursulfase beta, another enzyme replacement treatment for Hunter syndrome, also was approved in Korea by the Ministry of Food and Drug Safety. For more information of Idursulfase beta, which is sold commercially as Hunterase, see the "External links" below to access.
Treatment for glycogen storage disease type III may involve a high-protein diet, in order to facilitate gluconeogenesis. Additionally the individual may need:
- IV glucose (if oral route is inadvisable)
- Nutritional specialist
- Vitamin D (for osteoporosis/secondary complication)
- Hepatic transplant (if complication occurs)