Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In terms of treatment for hyper Igm syndrome there is the use of allogeneic hematopoietic cell transplantation. Additionally anti-microbial therapy, use of granulocyte colony-stimulating factor, immunosuppressants, as well as, other treatments may be needed.
Patients presenting with this disease undergo antibiotic treatment and gammaglobulin transfusions. Antibiotics are used to fight off the pathogenic organisms and the gammaglobulin helps provide a normal balance of antibodies to fight the infection. Bone marrow transplantation may be an option in some cases.
OMIM: 308230
The treatment of primary immunodeficiencies depends foremost on the nature of the abnormality. Somatic treatment of primarily genetic defects is in its infancy. Most treatment is therefore passive and palliative, and falls into two modalities: managing infections and boosting the immune system.
Reduction of exposure to pathogens may be recommended, and in many situations prophylactic antibiotics or antivirals may be advised.
In the case of humoral immune deficiency, immunoglobulin replacement therapy in the form of intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG) may be available.
In cases of autoimmune disorders, immunosuppression therapies like corticosteroids may be prescribed.
Bone marrow transplant may be possible for Severe Combined Immune Deficiency and other severe immunodeficiences.
Virus-specific T-Lymphocytes (VST) therapy is used for patients who have received hematopoietic stem cell transplantation that has proven to be unsuccessful. It is a treatment that has been effective in preventing and treating viral infections after HSCT. VST therapy uses active donor T-cells that are isolated from alloreactive T-cells which have proven immunity against one or more viruses. Such donor T-cells often cause acute graft-versus-host disease (GVHD), a subject of ongoing investigation. VSTs have been produced primarily by ex-vivo cultures and by the expansion of T-lymphocytes after stimulation with viral antigens. This is carried out by using donor-derived antigen-presenting cells. These new methods have reduced culture time to 10–12 days by using specific cytokines from adult donors or virus-naive cord blood. This treatment is far quicker and with a substantially higher success rate than the 3–6 months it takes to carry out HSCT on a patient diagnosed with a primary immunodeficiency. T-lymphocyte therapies are still in the experimental stage; few are even in clinical trials, none have been FDA approved, and availability in clinical practice may be years or even a decade or more away.
Treatment is most commonly directed at autoimmune disease and may be needed to treat bulky lymphoproliferation. First line therapies include corticosteroids (very active but toxic with chronic use), and IVIgG, which are not as effective as in other immune cytopenia syndromes.
Second line therapies include: mycophenolate mofetil (cellcept) which inactivates inosine monophosphate, most studied in clinical trials with responses varying (relapse, resolution, partial response). It does not affect lymphoproliferation or reduce DNTs, with no drug-drug interactions. This treatment is commonly used agent in patients who require chronic treatment based on tolerance and efficacy. It may cause hypogammaglobulinemia (transient) requiring IVIgG replacement.
Sirolimus (rapamycin, rapamune) which is a mTOR (mammalian target of rapamycin) inhibitor can be active in most patients and can in some cases lead to complete or near-complete resolution of autoimmune disease (>90%) With this treatment most patients have complete resolution of lymphoproliferation, including lymphadenopathy and splenomegaly (>90%) and have elimination of peripheral blood DNTs. Sirolimus may not be as immune suppressive in normal lymphocytes as other agents. Some patients have had improvement in immune function with transition from cellcept to rapamycin and it has not been reported to cause hypogammaglobulinemia. Hypothetically, Sirolimus may have lower risk of secondary cancers as opposed to other immune suppressants and requires therapeutic drug monitoring. It is the second most commonly used agent in patients that require chronic therapy. It is mostly well tolerated (though side effects include mucositis, diarrhea, hyperlipidemia, delayed wound healing) with drug-drug interactions. It has better activity against autoimmune disease and lymphoproliferation than mycophenolate mofetil and other drugs; however, sirolimus requires therapeutic drug monitoring and can cause mucositis. A risk with any agent in pre-cancerous syndrome as immune suppression can decreased tumor immunosurvellence. Its mTOR inhibitors active against lymphomas, especially EBV+ lymphomas. The Goal serum trough is 5-15 ng/ml and can consider PCP prophylaxis but usually not needed.
Other treatments may include drugs like Fansidar, mercaptopurine: More commonly used in Europe. Another is rituximab but this can cause lifelong hypogammaglobulinemia and a splenectomy but there is a >30% risk of pneumococcal sepsis even with vaccination and antibiotic prophylaxis
In terms of management for complement deficiency, immunosuppressive therapy should be used depending on the disease presented. A C1-INH concentrate can be used for angio-oedema (C1-INH deficiency).
Pneumococcus and haemophilus infections prevention can be taken via immunization for those with complement deficiency. Epsilon-aminocaproic acid could be used to treat hereditary C1-INH deficiency, though the possible side effect of intravascular thrombosis should be weighed.
There is no ‘standard treatment’ for people with CFND due to the large variations in phenotypic expression. Each patient needs to be assessed and treated based on their specific presentation in order to restore the aesthetic and functional balance.
Surgical corrections for the main symptoms;
- Craniosynostosis correction: The preferred age for this procedure is between 6–9 months of age. Performing this surgery at such an early age can limit the further development of facial asymmetry, if the asymmetry is caused by the craniosynostosis, and prevents prolonged elevated intracranial pressure (ICP). However, the data for the exact risk of an elevated intracranial pressure for patients with CFND is lacking in the published literature. The surgery involves a frontal bone advancement in combination with remodellation of the supraorbital rim.
- Orbital hypertelorism: It is preferred to wait with this treatment until the age of 5–8 years old, after permanent dentition. The procedures that can be performed are the facial bipartition and the box osteotomy. Facial bipartition is the more preferable choice as there are less additional corrections needed, as well as providing a more stable long-term result after treatment. After the correction of the orbitas, the medial corners of the eyes are put more into a horizontal line.
- Nasal deformity correction: The correction of the broad nasal base is simultaneously done with the orbital hypertelorism repair. This is for good alignment of the eyes with the nose for the best aesthetic result. A bifid nose tip will only be treated at the age of 18, when the patient's skeleton has fully matured.
Treatment of THB deficiencies consists of THB supplementation (2–20 mg/kg per day) or diet to control blood phenylalanine concentration and replacement therapy with neurotransmitters precursors (L-DOPA and 5-HTP) and supplements of folinic acid in DHPR deficiency.
Tetrahydrobiopterin is available as a tablet for oral administration in the form of "tetrahydrobiopterin dihydrochloride" (BH4*2HCL). BH4*2HCL is FDA approved under the trade name Kuvan. The typical cost of treating a patient with Kuvan is $100,000 per year. BioMarin holds the patent for Kuvan until at least 2024, but Par Pharmaceutical has a right to produce a generic version by 2020. BH4*2HCL is indicated at least in tetrahydrobiopterin deficiency caused by GTPCH deficiency or PTPS deficiency.
Other therapeutic interventions include:
- ethosuximide and other anticonvulsant drugs
- GHB receptor antagonist NCS-382
- GABA receptor modulators
- uridine
- acamprosate
- dopaminergic agents
- dextromethorphan
- glutamine
- antioxidants
- Lamotrigine
The GABA(B) receptor antagonist, SGS-742, is currently being tested as a potential therapeutic in an NIH phase II clinical trial (NCT02019667).
Several medications are used to improve bile flow, including ursodiol (Actigall).These medications differ in their rates of success.
Certain drugs may be used to reduce itching (pruritus): hydroxyzine (Atarax), cholestyramine, rifampicin, phenobarbital, and naltrexone. Similar to the medications which improve bile flow, the anti-itching drugs vary in their success rate.
Many patients with Alagille syndrome will also benefit from a high dose of a multivitamin such as ADEK (continuing high levels of vitamins A, D, E, and K), as the reduced bile flow makes it difficult to absorb and utilize these vitamins.
Baclofen (β-p-chlorophenyl-GABA) has some analgesic properties and has been traditionally used for spasticity. Its pharmacological effects primarily take place via presynaptic GABA receptors in the spinal cord, simultaneously releasing excitatory neurotransmitters onto motor neurons. Because the number and function of GABA receptors has been shown to progressively diminish in Aldh5a1-/- mice, such a therapy may prove to be useful. However, no data on the efficacy of baclofen on Aldh5a1-/- mice or human patients has been reported.
Early treatment is possible once the disease is detected. Once the classical symptoms appear, the best way to eliminate the dangers of Alagille syndrome is a full liver transplant. Most of the short-term treatments available are aimed at improving the functioning of the heart and reducing the effects of impaired liver, kidney, and spleen function.
Hyper IgM Syndrome Type 1 (HIGM-1) is the X-linked variant of the Hyper-IgM syndrome. The affected individuals are virtually always male, because males only have one X chromosome, received from their mothers. Their mothers are not symptomatic, even though they are carriers of the allele, because the trait is recessive. Male offspring of these women have a 50% chance of inheriting their mother's mutant allele.
In congenital FXII deficiency treatment is not necessary. In acquired FXII deficiency the underlying problem needs to be addressed.
Hyper-IgM syndrome type 3 is a form of Hyper IgM syndrome characterized by mutations of the "CD40" gene. In this type, Immature B cells cannot receive signal 2 from helper T cells which is necessary to mature into mature B cells.
As there is no known cure, Loeys–Dietz syndrome is a lifelong condition. Due to the high risk of death from aortic aneurysm rupture, patients should be followed closely to monitor aneurysm formation, which can then be corrected with interventional radiology or vascular surgery.
Previous research in laboratory mice has suggested that the angiotensin II receptor antagonist losartan, which appears to block TGF-beta activity, can slow or halt the formation of aortic aneurysms in Marfan syndrome. A large clinical trial sponsored by the National Institutes of Health is currently underway to explore the use of losartan to prevent aneurysms in Marfan syndrome patients. Both Marfan syndrome and Loeys–Dietz syndrome are associated with increased TGF-beta signaling in the vessel wall. Therefore, losartan also holds promise for the treatment of Loeys–Dietz syndrome. In those patients in which losartan is not halting the growth of the aorta, irbesartan has been shown to work and is currently also being studied and prescribed for some patients with this condition.
If an increased heart rate is present, atenolol is sometimes prescribed to reduce the heart rate to prevent any extra pressure on the tissue of the aorta. Likewise, strenuous physical activity is discouraged in patients, especially weight lifting and contact sports.
Should treatment be started it should address both the paraprotein level and the lymphocytic B-cells.
In 2002, a panel at the International Workshop on Waldenström's Macroglobulinemia agreed on criteria for the initiation of therapy. They recommended starting therapy in patients with constitutional symptoms such as recurrent fever, night sweats, fatigue due to anemia, weight loss, progressive symptomatic lymphadenopathy or spleen enlargement, and anemia due to bone marrow infiltration. Complications such as hyperviscosity syndrome, symptomatic sensorimotor peripheral neuropathy, systemic amyloidosis, kidney failure, or symptomatic cryoglobulinemia were also suggested as indications for therapy.
Treatment includes the monoclonal antibody rituximab, sometimes in combination with chemotherapeutic drugs such as chlorambucil, cyclophosphamide, or vincristine or with thalidomide. Corticosteroids, such as prednisone, may also be used in combination. Plasmapheresis can be used to treat the hyperviscosity syndrome by removing the paraprotein from the blood, although it does not address the underlying disease. Ibrutinib is another agent that has been approved for use in this condition.
Recently, autologous bone marrow transplantation has been added to the available treatment options.
When primary or secondary resistance invariably develops, salvage therapy is considered. Allogeneic stem cell transplantation can induce durable remissions for heavily pre-treated patients.
Treatment options that have been tried include zidovudine and the CHOP regimen. Pralatrexate has also been investigated. Most therapy is directed towards the cancer rather than the virus itself.
Recently, it has been reported that the traditional glucocorticoid-based chemotherapy toward ATL are largely mediated by thioredoxin binding protein-2 (TBP-2/TXNIP/VDUP1), suggesting the potential use of a TBP-2 inducer as a novel therapeutic target.
Recently, mogamulizumab, has been approved for the treatment of ATL in Japan.
At a medical conference in December 2013, researchers reported anywhere from 21-50% of ATL patients have disease expressing CD30. This suggests treatment with CD30-targeting brentuximab vedotin may be beneficial.
Although frequently employed to treat patients experiencing the cytokine storm associated with ARDS, corticosteroids and NSAIDs have been evaluated in clinical trials and have shown no effect on lung mechanics, gas exchange, or beneficial outcome in early established ARDS.
Some types of arthritis medications are designed to reduce inflammation by inhibiting the tumor necrosis factor-alpha pathway to immune cell activation; these drugs are known as TNF-alpha blockers. One study found that three different TNF-alpha blockers afforded a slight reduction in antibody presentation after vaccination against influenza in a group of immunocompromised patients, however it did not significantly affect patients' protective factor gained from inoculation. More research is necessary before any conclusions may be made regarding the efficacy of TNF-alpha blockers at reducing the effects of a cytokine storm in hospitalized flu patients.
The most commonly effective treatment is clonazepam, which leads to the increased efficacy of another inhibitory neurotransmitter, GABA. There are anecdotal reports of the use of Levetiracetam in genetic and acquired hyperekplexia. During attacks of hypertonia and apnea, the limbs and head may be flexed towards the trunk in order to dissipate the symptoms. This is named the Vigevano maneuver after the doctor who invented it.
There is no known treatment at present, although some investigators have tried to lessen the hypercalcemia with various forms of bisphosphonates.
The primary treatment method for fatty-acid metabolism disorders is dietary modification. It is essential that the blood-glucose levels remain at adequate levels to prevent the body from moving fat to the liver for energy. This involves snacking on low-fat, high-carbohydrate nutrients every 2–6 hours. However, some adults and children can sleep for 8–10 hours through the night without snacking.
Individuals presenting with Type III galactosemia must consume a lactose- and galactose-restricted diet devoid of dairy products and mucilaginous plants. Dietary restriction is the only current treatment available for GALE deficiency. As glycoprotein and glycolipid metabolism generate endogenous galactose, however, Type III galactosemia may not be resolved solely through dietary restriction.