Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment plans will vary depending on the severity of the condition and its evidences in each patient.
Areas that will probably need to be evaluated and assessed include speech, vision, hearing and EEG. Treatment measures may include physical therapy, occupational therapy, Speech therapy, anti-seizure drugs and orthotic devices. Surgery may be needed to assuage spastic motor problems. Various supportive measures such as joint contractures that could prevent complications.
Genetic counseling may also be recommended
Most patients suffering from KTS have epilepsy that is resistant to anti-epileptic agents. Some patients showed a partial response to treatment, but very few were able to stop their epilepsy through treatment. One case was responsive to treatment using Phenobartbital and vigabatrin which are both anti-epileptic agents. Spasticity can be treated with baclofen, but not all patients are responsive to the treatment.
In May 2013, the US FDA granted Orphan drug status to Diiodothyropropionic acid (DITPA) in the treatment of MCT8 deficiency. This was following the use of DITPA towards a child in Australia, under compassionate grounds.
There is no established treatment for AHDS. Theoretical considerations suggested TRIAC (triiodothyroacetate or tiratricol, a natural non-classical thyroid hormone) to be beneficial. In 2014, a case was demonstrated in which therapy with TRIAC in early childhood led to significant improvement of cognition and mobility. Currently, the effect of Triac is under investigation.
Currently, purine replacement via S-adenosylmethionine (SAM) supplementation in people with Arts syndrome appears to improve their condition. This suggests that SAM supplementation can alleviate symptoms of PRPS1 deficient patients by replacing purine nucleotides and open new avenues of therapeutic intervention. Other non-clinical treatment options include educational programs tailored to their individual needs. Sensorineural hearing loss has been treated with cochlear implantation with good results. Ataxia and visual impairment from optic atrophy are treated in a routine manner. Routine immunizations against common childhood infections and annual influenza immunization can also help prevent any secondary infections from occurring.
Regular neuropsychological, audiologic, and ophthalmologic examinations are also recommended.
Carrier testing for at-risk relatives and prenatal testing for pregnancies at increased risk are possible if the disease-causing mutation in the family is known.
Treatment is symptomatic and may include nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids to reduce swelling, antibiotics and immunosuppressants. Surgery may be indicated to relieve pressure on the facial nerves and reduce swelling, but its efficacy is uncertain. Massage and electrical stimulation may also be prescribed.
Currently, there is no cure for laminopathies and treatment is largely symptomatic and supportive. Physical therapy and/or corrective orthopedic surgery may be helpful for patients with muscular dystrophies. Cardiac problems that occur with some laminopathies may require a pacemaker. Treatment for neuropathies may include medication for seizures and spasticity.
The recent progress in uncovering the molecular mechanisms of toxic progerin formation in laminopathies leading to premature aging has opened up the potential for the development of targeted treatment. The farnesylation of prelamin A and its pathological form progerin is carried out by the enzyme farnesyl transferase. Farnesyl transferase inhibitors (FTIs) can be used effectively to reduce symptoms in two mouse model systems for progeria and to revert the abnormal nuclear morphology in progeroid cell cultures. Two oral FTIs, lonafarnib and tipifarnib, are already in use as anti-tumor medication in humans and may become avenues of treatment for children suffering from laminopathic progeria. Nitrogen-containing bisphosphate drugs used in the treatment of osteoporosis reduce farnesyldiphosphate production and thus prelamin A farnesylation. Testing of these drugs may prove them to be useful in treating progeria as well. The use of antisense oligonucleotides to inhibit progerin synthesis in affected cells is another avenue of current research into the development of anti-progerin drugs.
Treatment for the disease itself is nonexistent, but there are options for most of the symptoms. For example, one suffering from hearing loss would be given hearing aids, and those with Hirschsprung’s disorder can be treated with a colostomy.
There is no standard treatment for the hand malformations in Apert due to the differences and severity in clinical manifestations in different patients. Every patient should therefore be individually approached and treated, aiming at an adequate balance between hand functionality and aesthetics.
However, some guidelines can be given depending on the severity of the deformities.
In general it is initially recommended to release the first and fourth interdigital spaces, thus releasing the border rays.
This makes it possible for the child to grasp things by hand, a very important function for the child's development. Later the second and third interdigital spaces have to be released.
Because there are three handtypes in Apert, all with their own deformities, they all need a different approach regarding their treatment:
- Type I hand usually needs only the interdigital web space release. First web release is rarely needed but often its deepening is necessary. Thumb clynodactyly correction will be needed.
- In type II hands it is recommended to release the first and fifth rays in the beginning, then the second and the third interdigital web spaces have to be freed. The clynodactyly of the thumb has to be corrected as well. The lengthening of the thumb phalanx may be needed, thus increasing the first web space. In both type I and type II, the recurrent syndactyly of the second web space will occur because of a pseudoepiphysis at the base of the index metacarpal. This should be corrected by later revisions.
- Type III hands are the most challenging to treat because of their complexity. First of all, it is advised to release the first and fourth webspace, thus converting it to type I hand. The treatment of macerations and nail-bed infections should also be done in the beginning. For increasing of the first web space, lengthening of the thumb can be done. It is suggested that in severe cases an amputation of the index finger should be considered. However, before making this decision, it is important to weigh the potential improvement to be achieved against the possible psychological problems of the child later due to the aesthetics of the hand. Later, the second and/or third interdigital web space should be released.
With growing of a child and respectively the hands, secondary revisions are needed to treat the contractures and to improve the aesthetics.
Although rare, this condition is often treatable with surgery. In most cases, the blind hemivagina is opened, and the fluid drained.
If the Hirschsprung's disease is treated in time, ABCD sufferers live otherwise healthy lives. If it is not found soon enough, death often occurs in infancy. For those suffering hearing loss, it is generally regressive and the damage to hearing increases over time. Digestive problems from the colostomy and reattachment may exist, but most cases can be treated with laxatives. The only other debilitating symptom is hearing loss, which is usually degenerative and can only be treated with surgery or hearing aids.
In 2006, retinoids and antibiotics have been used with a successful dental maintenance for one year. In the past, only Extraction of all teeth and construction of a complete denture were made.
An alternative to rehabilitation with conventional dental prothesis after total loss of the natural teeth was proposed by Drs Ahmad Alzahaili and his teacher Jean-François Tulasne (developer of the partial bone graft technique used). This approach entails transplanting bone extracted from the cortical external surface of the parietal bone to the patient’s mouth, affording the patient the opportunity to lead a normal life.
Notwithstanding this treatment do not scope the disease itself. Actually it is the repositioning of bone from calvaria to the maxillary bones, and placement of dental implants in a completely edentulous maxilae, when the patient has already lost all teeth. An already developed method to reconstruct maxillae in edentulous elderly people by other dental professionals.
There's still no real treatment to help those who suffer from this disease to keep all their natural teeth, though their exfoliation and loss can be delayed.
The maintenance of teeth is done by dental professionals with a procedure called scaling and root planing with the use of systemic antibiotics. The syndrome should be diagnosed as earlier as possible, so the teeth can be kept longer in the mouth, helping the development of the maxillary bones.
There is no way to reverse VHL mutations, but early recognition and treatment of specific manifestations of VHL can substantially decrease complications and improve quality of life. For this reason, individuals with VHL disease are usually screened routinely for retinal angiomas, CNS hemangioblastomas, clear-cell renal carcinomas and pheochromocytomas. CNS hemangioblastomas are usually surgically removed if they are symptomatic. Photocoagulation and cryotherapy are usually used for the treatment of symptomatic retinal angiomas, although anti-angiogenic treatments may also be an option. Renal tumours may be removed by a partial nephrectomy or other techniques such as radiofrequency ablation.
What happens after your child is diagnosed with CRMO/CNO?
Find a doctor who has experience with patients with CRMO/CNO. CRMO/CNO in children is generally treated by a pediatric rheumatologist. Ask your doctor for a referral.
Why do we treat CRMO/CNO?
- Reduce inflammation
- Prevent bone damage and bone deformities
- Decrease pain
How is CRMO/CNO treated?
CRMO/CNO is different for each patient. Not every child responds to every treatment. Your doctor may need to try several medications before finding the one that works for your child. In severe cases, doctors may combine medications to treat the disease. Your doctor will work with you and your child to help find the best treatment.
For some CRMO/CNO patients, the disease can be managed with non-steroidal anti-inflammatory drugs (NSAIDs). NSAIDs are the first line treatment. However, if NSAIDs are not effective, or if your child does not tolerate NSAIDs well, second line treatments are available.
First line treatments include Naproxen (Aleve), Celecoxib (Celebrex) Meloxicam (Mobic), Piroxicam (Feldene), Indomethacin (Indocin), Diclofenac (Voltaren).
Second line treatments include corticosteroids (Prednisone/Prednisolone), Methotrexate (Otrexup, Rasuvo, Trexall), Sulfasalazine (Azulfidine), Pamidronate (Aredia), Zolendronic Acid (Zometa), Adalimumab (Humira), Etanercept (Enbrel), Infliximab (Remicade).
These medications are also used in children with other inflammatory and/or bone conditions. Side effects may occur while taking these medications. Your physician will have a discussion with you prior to starting any new treatment.
For more severe disease, oral corticosteroids may be necessary to reduce the inflammatory response. When large amounts of steroids are required or if the disease is severe and is not responding to steroid therapy, other immunosuppressive medications often are recommended. These immunosuppressive drugs include methotrexate, cyclophosphamide, cyclosporine or azathioprine. In some cases, combinations of these medicines are prescribed. Occasionally, if the disease has damaged blood vessels, cochlear implantation may
need to be done to correct the problem.
Cinnarizine is mainly used to treat nausea and vomiting associated with motion sickness, vertigo, Ménière's disease, or Cogan's syndrome. Studies have shown it to produce significant improvement in hearing loss in some patients.
Surgery is needed to prevent the closing of the coronal sutures from damaging brain development. In particular, surgeries for the LeFort III or monobloc midface distraction osteogenesis which detaches the midface or the entire upper face, respectively, from the rest of the skull, are performed in order to reposition them in the correct plane. These surgeries are performed by both plastic and oral and maxillofacial (OMS) surgeons, often in collaboration.
A cure for Werner syndrome has not yet been discovered. It is often treated by managing the associated diseases and relieving symptoms to improve quality of life. The skin ulcers that accompany WS can be treated in several ways, depending on the severity. Topical treatments can be used for minor ulcers, but are not effective in preventing new ulcers from occurring. In the most severe cases, surgery may be required to implant a skin graft or amputate a limb if necessary. Diseases commonly associated with Werner Syndrome such as diabetes and cancer are treated in generally the same ways as they would be for a non-Werner Syndrome individual. A change in diet & exercise can help prevent and control arteriosclerosis, and regular cancer screenings can allow for early detection of cancer.
There is recent evidence that suggests that the cytokine-suppressive anti-inflammatory drug, SB203580, may be a possible therapeutic option for patients with Werner's Syndrome. This drug targets the p38 signaling pathway, which may become activated as a result of genomic instability and stalled replication forks that are characteristic mutations in WS. This activation of p38 may play a role in the onset of premature cell aging, skin aging, cataracts, and graying of the hair. The p38 pathway has also been implicated in the anti-inflammatory response that causes atherosclerosis, diabetes, and osteoporosis, all of which are associated with Werner's Syndrome. This drug has shown to revert the aged characteristics of young WS cells to those seen in normal, young cells and improve the lifespan of WS cells "in vitro". SB203580 is still in the clinical trial stages, and the same results have not yet been seen "in vivo".
In 2010, vitamin C supplementation was found to reverse the premature aging and several tissue dysfunctions in a genetically modified mouse model of the disease. Vitamin C supplementation also appeared to normalize several age-related molecular markers such as the increased levels of the transcription factor NF-κB. In addition, it decreases activity of genes activated in human Werner syndrome and increases gene activity involved in tissue repair. Supplementation of vitamin C is suspected to be beneficial in the treatment of human Werner syndrome, although there was no evidence of anti-aging activity in nonmutant mice. In general, treatments are available for only the symptoms or complications and not for the disease itself.
Sanjad-Sakati syndrome is a rare autosomal recessive genetic condition seen in offspring of Middle Eastern origin. It was first described in Saudi Arabia, but has been seen in Qatari, Kuwaiti, Omani and other children from the Middle East as well as elsewhere. The condition is caused by mutations or deletions in the TBCE gene of Chromosome No.1.
The condition is characterised by a triad of growth and mental retardation, hypoparathyroidism and dysmorphism.
Adducted thumb syndrome recessive form is a rare disease affecting multiple systems causing malformations of the palate, thumbs, and upper limbs. The name Christian syndrome derives from Joe. C. Christian, the first person to describe the condition. Inheritance is believed to be autosomal recessive, caused by mutation in the CHST14 (carbohydrate sulfotransferase 14) gene.
After the first discovery and description of Marshall–Smith syndrome in 1971, research to this rare syndrome has been carried out.
- Adam, M., Hennekam, R.C.M., Butler, M.G., Raf, M., Keppen, L., Bull, M., Clericuzio, C., Burke, L., Guttacher, A., Ormond, K., & Hoyme, H.E. (2002). Marshall–Smith syndrome: An osteochondrodysplasia with connective tissue abnormalities. 23rd Annual David W. Smith Workshop on Malformations and Morphogenesis, August 7, Clemson, SC.
- Adam MP, Hennekam RC, Keppen LD, Bull MJ, Clericuzio CL, Burke LW, Guttmacher AE, Ormond KE and Hoyme HE: Marshall-Smith Syndrome: Natural history and evidence of an osteochondrodysplasia with connective tissue abnormalities. American Journal of Medical Genetics 137A:117–124, 2005.
- Baldellou Vazquez A, Ruiz-Echarri Zelaya MP, Loris Pablo C, Ferr#{225}ndez Longas A, Tamparillas Salvador M. El sIndrome de Marshall-Smith: a prop#{243}sito de una observad#{243}n personal. An Esp Pediatr 1983; 18:45-50.
- Butler, M.G. (2003). Marshall–Smith syndrome. In: The NORD Guide to Rare Disorders. (pp219–220) Lippincott, Williams & Wilkins, Philadelphia, PA.
- Charon A, Gillerot T, Van Maldergem L, Van Schaftingen MH, de Bont B, Koulischer L. The Marshall–Smith syndrome. Eur J Pediatr 1990; 150: 54-5.
- Dernedde, G., Pendeville, P., Veyckemans, F., Verellen, G. & Gillerot, Y. (1998). Anaesthetic management of a child with Marshall–Smith syndrome. Canadian Journal of Anesthesia. 45 (7): 660. Anaesthetic management of a child with Marshall-Smith syndrome
- Diab, M., Raff, M., Gunther, D.F. (2002). Osseous fragility in Marshall–Smith syndrome. Clinical Report: Osseous fragility in Marshall-Smith syndrome
- Ehresmann, T., Gillessen-Kaesbach G., Koenig R. (2005). Late diagnosis of Marshall Smith Syndrome (MSS). In: Medgen 17.
- Hassan M, Sutton T, Mage K, LimalJM, Rappaport R. The syndrome of accelerated bone maturation in the newborn infant with dysmorphism and congenital malformations: (the so-called Marshall–Smith syndrome). Pediatr Radiol 1976; 5:53-57.
- Hoyme HE and Bull MJ: The Marshall-Smith Syndrome: Natural history beyond infancy. Western Society for Pediatric Research, Carmel, California, February, 1987. Clin Res 35:68A, 1987.
- Hoyme HE and Bull MJ: The Marshall-Smith Syndrome: Natural history beyond infancy. David W. Smith Morphogenesis and Malformations Workshop. Greenville, SC, August, 1987. Proceedings of the Greenwood Genetics Center 7:152, 1988.
- Hoyme HE, Byers PH, Guttmacher AE: Marshall–Smith syndrome: Further evidence of an osteochondrodysplasia in long-term survivors. David W. Smith Morphogenesis and Malformations Workshop, Winston-Salem, NC, August, 1992. Proceedings of the Greenwood Genetic Center 12:70, 1993.
- .
- Tzu-Jou Wang (2002). Marshall–Smith syndrome in a Taiwanese patient with T-cell immunodeficiency. Am J Med Genet Part A;112 (1):107-108.
No cures for lysosomal storage diseases are known, and treatment is mostly symptomatic, although bone marrow transplantation and enzyme replacement therapy (ERT) have been tried with some success. ERT can minimize symptoms and prevent permanent damage to the body. In addition, umbilical cord blood transplantation is being performed at specialized centers for a number of these diseases. In addition, substrate reduction therapy, a method used to decrease the production of storage material, is currently being evaluated for some of these diseases. Furthermore, chaperone therapy, a technique used to stabilize the defective enzymes produced by patients, is being examined for certain of these disorders. The experimental technique of gene therapy may offer cures in the future.
Ambroxol has recently been shown to increase activity of the lysosomal enzyme glucocerebrosidase, so it may be a useful therapeutic agent for both Gaucher disease and Parkinson's disease. Ambroxol triggers the secretion of lysosomes from cells by inducing a pH-dependent calcium release from acidic calcium stores. Hence, relieving the cell from accumulating degradation products is a proposed mechanism by which this drug may help.
Often, this disease is treated by giving aspirin to inhibit platelet activation, and/or warfarin as an anticoagulant. The goal of the prophylactic treatment with warfarin is to maintain the patient's INR between 2.0 and 3.0. It is not usually done in patients who have had no thrombotic symptoms.
Anticoagulation appears to prevent miscarriage in pregnant women. In pregnancy, low molecular weight heparin and low-dose aspirin are used instead of warfarin because of warfarin's teratogenicity. Women with recurrent miscarriage are often advised to take aspirin and to start low molecular weight heparin treatment after missing a menstrual cycle. In refractory cases plasmapheresis may be used.
Other features include:
- Stunting
- Small hands and feet with long, tapering fingers and clinodactyly
- Dental anomalies in the form of malalignment and malocclusion
In another study of six patients, the patients were investigated further. They were found to have low levels of IGF-1 and markedly retarded bone age.
This syndrome is associated with microcephaly, arthrogryposis and cleft palate and various craniofacial, respiratory, neurological and limb abnormalities, including bone and joint defects of the upper limbs, adducted thumbs, camptodactyly and talipes equinovarus or calcaneovalgus. It is characterized by craniosynostosis, and myopathy in association with congenital generalized hypertrichosis.
Patients with the disease are considered intellectually disabled. Most die in childhood. Patients often suffer from respiratory difficulties such as pneumonia, and from seizures due to dysmyelination in the brain's white matter. It has been hypothesized that the Moro reflex (startle reflex in infants) may be a tool in detecting the congenital clapsed thumb early in infancy. The thumb normally extends as a result of this reflex.
Melnick–Needles syndrome (MNS), also known as Melnick–Needles osteodysplasty, is an extremely rare congenital disorder that affects primarily bone development. Patients with Melnick–Needles syndrome have typical faces (exophthalmos, full cheeks, micrognathia and malalignment of teeth), flaring of the metaphyses of long bones, s-like curvature of bones of legs, irregular constrictions in the ribs, and sclerosis of base of skull.
In males, the disorder is nearly always lethal in infancy. Lifespan of female patients might not be affected.
Melnick–Needles syndrome is associated with mutations in the "FLNA" gene and is inherited in an X-linked dominant manner. As with many genetic disorders, there is no known cure to MNS.
The disorder was first described by John C. Melnick and Carl F. Needles in 1966 in two multi-generational families.
Marshall–Smith syndrome is not to be confused with:
- Marshall syndrome (aka.Periodic fever, aphthous stomatitis, pharyngitis and adenitis (PFAPA syndrome, see also: Periodic fever syndrome)
- Sotos (like) syndrome
- Weaver-Smith syndrome (WSS)