Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The antibiotic doxycycline is effective in treating lymphatic filariasis. Its drawbacks are that it requires 4 to 6 weeks of treatment and should not be used in young children and pregnant women, which limits its use for mass prevention. The parasites responsible for elephantiasis have a population of endosymbiotic bacteria, "Wolbachia", that live inside the worm. When the symbiotic bacteria of the adult worms are killed by the antibiotic, they no longer provide chemicals which the nematode larvae need to develop, which either kills the larvae or prevents their normal development. This permanently sterilizes the adult worms, which additionally die within 1 to 2 years instead of their normal 10 to 14 year lifespan.
Treatment of loiasis involves chemotherapy or, in some cases, surgical removal of adult worms followed by systemic treatment. The current drug of choice for therapy is diethylcarbamazine (DEC), though ivermectin use is not unwarranted. The recommend dosage of DEC is 6 mg/kg/d taken three times daily for 12 days. The pediatric dose is the same. DEC is effective against microfilariae and somewhat effective against macrofilariae (adult worms).
In patients with high microfilaria load, however, treatment with DEC may be contraindicated, as the rapid microfilaricidal actions of the drug can provoke encephalopathy. In these cases, albendazole administration has proved helpful, and superior to ivermectin, which can also be risky despite its slower-acting microfilaricidal effects.
Management of "Loa loa" infection in some instances can involve surgery, though the timeframe during which surgical removal of the worm must be carried out is very short. A detailed surgical strategy to remove an adult worm is as follows (from a real case in New York City). The 2007 procedure to remove an adult worm from a male Gabonian immigrant employed proparacaine and povidone-iodine drops, a wire eyelid speculum, and 0.5 ml 2% lidocaine with epinephrine 1:100,000, injected superiorly. A 2-mm incision was made and the immobile worm was removed with forceps. Gatifloxacin drops and an eye-patch over ointment were utilized post surgery and there were no complications (unfortunately, the patient did not return for DEC therapy to manage the additional worm—and microfilariae—present in his body).
Treatments for lymphatic filariasis differ depending on the geographic location of the endemic area. In sub-Saharan Africa, albendazole is being used with ivermectin to treat the disease, whereas elsewhere in the world, albendazole is used with diethylcarbamazine. Geo-targeting treatments is part of a larger strategy to eventually eliminate lymphatic filariasis by 2020.
Additionally, surgical treatment may be helpful for issues related to scrotal elephantiasis and hydrocele. However, surgery is generally ineffective at correcting elephantiasis of the limbs. A vaccine is not yet available but in 2013 the University of Illinois was reporting 95% efficacity in testing against "B. malayi" in mice.
Treatment for podoconiosis consists of consistent shoe-wearing (to avoid contact with the irritant soil) and hygiene - daily soaking in water with an antiseptic (such as bleach) added, washing the feet and legs with soap and water, application of ointment, and in some cases, wearing elastic bandages. Antibiotics are used in cases of infection.
The severe symptoms caused by the parasite can be avoided by cleansing the skin, surgery, or the use of anthelmintic drugs, such as diethylcarbamazine (DEC), ivermectin, or albendazole. The drug of choice is DEC, which can eliminate the microfilariae from the blood and also kill the adult worms with a dosage of 6 mg/kg semiannually or annually. A polytherapy treatment that includes ivermectin with DEC or albendazole is more effective than each drug alone. Protection is similar to that of other mosquito-spread illnesses; one can use barriers both physical (a mosquito net), chemical (insect repellent), or mass chemotherapy as a method to control the spread of the disease.
Mass chemotherapy should cover the entire endemic area at the same time. This will significantly decrease the overall microfilarial titer in blood in mass, hence decreasing the transmission through mosquitoes during their subsequent bites.
Antibiotic active against the Wolbachia symbionts of the worm have been experimented with as treatment. Wolbachia-free worms first become sterile, and later die prematurely.
The recommended treatment for people outside the United States is albendazole combined with ivermectin. A combination of diethylcarbamazine and albendazole is also effective. Side effects of the drugs include nausea, vomiting, and headaches. All of these treatments are microfilaricides; they have no effect on the adult worms. While the drugs are critical for treatment of the individual, proper hygiene is also required.
Different trials were made to use the known drug at its maximum capacity in absence of new drugs. In a study from India, it was shown that a formulation of albendazole had better anti-filarial efficacy than albendazole itself.
In 2003, the common antibiotic doxycycline was suggested for treating elephantiasis. Filarial parasites have symbiotic bacteria in the genus "Wolbachia", which live inside the worm and seem to play a major role in both its reproduction and the development of the disease. This drug has shown signs of inhibiting the reproduction of the bacteria, further inducing sterility.
Clinical trials in June 2005 by the Liverpool School of Tropical Medicine reported an eight-week course almost completely eliminated microfilaraemia.
For the treatment of individuals, doxycycline is used to kill the "Wolbachia" bacteria that live in adult worms. This adjunct therapy has been shown to significantly lower microfilarial loads in the host, and may kill the adult worms, due to the symbiotic relationship between "Wolbachia" and the worm. In four separate trials over 10 years with various dosing regimens of doxycycline for individualized treatment, doxycycline was found to be effective in sterilizing the female worms and reducing their numbers over a period of four to six weeks. Research on other antibiotics, such as rifampicin, has shown it to be effective in animal models at reducing "Wolbachia" both as an alternative and as an adjunct to doxycycline. However, doxycycline treatment requires daily dosing for at least four to six weeks, making it more difficult to administer in the affected areas.
A goal of community base efforts is to eliminate microfilariae from the blood of infected individuals in order to prevent transmission to the mosquito. This is primarily accomplished through the use of drugs. The treatment for "B. malayi" infection is the same as for bancroftian filariasis. Diethylcarbamazine (DEC) has been used in mass treatment programs in the form of DEC-medicated salt, as an effective microfilaricidal drug in several locations, including India. While DEC tends to cause adverse reactions like immediate fever and weakness, it is not known to cause any long-term adverse drug effects. DEC has been shown to kill both adult worms and microfilariae. In Malaysia, DEC dosages (6 mg/kg weekly for 6 weeks; 6 mg/kg daily for 9 days) reduced microfilariae by 80% for 18–24 months after treatment in the absence of mosquito control. Microfilariae numbers slowly return many months after treatment, thus requiring multiple drug doses over time in order to achieve long-term control. However, it is not known how many years of mass drug administration is required to eliminate transmission. But currently, there have been no confirmed cases of DEC resistance.
Single doses of two drugs (albendazole-DEC and albendazole-ivermectin) have been shown to remove 99% of microfilariae for a year after treatment and help to improve elephantiasis during early stages of the disease. Ivermectin does not appear to kill adult worms but serves as a less toxic microfilaricide.
Since the discovery of the importance of "Wolbachia" bacteria in the life cycle of "B. malayi" and other nematodes, novel drug efforts have targeted the endobacterium. Tetracyclines, rifampicin, and chloramphenicol have been effective in vitro by interfering with larvae molting and microfilariae development. Tetracyclines have been shown to cause reproductive and embryogenesis abnormalities in the adult worms, resulting in worm sterility. Clinical trials have demonstrated the successful reduction of "Wolbachia" and microfilariae in onchocerciasis and "W. bancrofti" infected patients. These antibiotics, while acting through a slightly more indirect route, are promising antifilarial drugs.
In mass drug administration (MDA) programmes, the treatment for onchocerciasis is ivermectin (trade name: Mectizan); infected people can be treated with two doses of ivermectin, six months apart, repeated every three years. The drug paralyses and kills the microfilariae causing fever, itching, and possibly oedema, arthritis and lymphadenopathy. Intense skin itching is eventually relieved, and the progression towards blindness is halted. In addition, while the drug does not kill the adult worms, it does prevent them for a limited time from producing additional offspring. The drug therefore prevents both morbidity and transmission for up to several months.
Ivermectin treatment is particularly effective because it only needs to be taken once or twice a year, needs no refrigeration, and has a wide margin of safety, with the result that it has been widely given by minimally trained community health workers.
Broad-spectrum benzimidazoles (such as albendazole and mebendazole) are the first line treatment of intestinal roundworm and tapeworm infections. Macrocyclic lactones (such as ivermectin) are effective against adult and migrating larval stages of nematodes. Praziquantel is the drug of choice for schistosomiasis, taeniasis, and most types of food-borne trematodiases. Oxamniquine is also widely used in mass deworming programmes. Pyrantel is commonly used for veterinary nematodiasis. Artemisinins and derivatives are proving to be candidates as drugs of choice for trematodiasis.
There is no consensus on optimal therapeutic approach. The most commonly used drug is diethylcarbamazine (DEC), but it is, however, often ineffective. Although other drugs have been tried such as praziquantel, ivermectin, and albendozole, none has proven to be reliably and rapidly effective. Mebendazole appeared more active than DEC in eliminating the infection, and had comparable overall responses. Thiabendazole evidenced a small, but significant activity against the infection. A combination of treatments, DEC plus mebendazole, was much more effective than single drug doses.
Prevention can be partially achieved through limiting contact with vectors through the use of DEET and other repellents, but due to the predominantly relatively mild symptoms and the infection being generally asymptomatic, little has formally been done to control the disease.
Secondary bacterial infection is often observed with lymphatic filariasis. Rigorous hygiene practices, including washing with soap and water daily and disinfecting wounds can help heal infected surfaces, and slow and potentially reverse existing tissue damage. Promoting hygiene is essential for lymphatic filariasis patients given the compromised immune and damaged lymphatic systems and can help prevent suffering and disability.
Filarial diseases in humans offer prospects for elimination by means of vermicidal treatment. If the human link in the chain of infection can be broken, then notionally the disease could be wiped out in a season. In practice it is not quite so simple, and there are complications in that multiple species overlap in certain regions and double infections are common. This creates difficulties for routine mass treatment because people with onchocerciasis in particular react badly to treatment for lymphatic filariasis.
Diethylcarbamazine has been shown as an effective prophylaxis for "Loa loa" infection.
A study of Peace Corps volunteers in the highly Loa—endemic Gabon, for example, had the following results: 6 of 20 individuals in a placebo group contracted the disease, compared to 0 of 16 in the DEC-treated group. Seropositivity for antifilarial IgG antibody was also much higher in the placebo group. The recommended prophylactic dose is 300 mg DEC given orally once weekly. The only associated symptom in the Peace Corps study was nausea.
Researchers believe that geo-mapping of appropriate habitat and human settlement patterns may, with the use of predictor variables such as forest, land cover, rainfall, temperature, and soil type, allow for estimation of Loa loa transmission in the absence of point-of-care diagnostic tests. In addition to geo-mapping and chemoprophylaxis, the same preventative strategies used for malaria should be undertaken to avoid contraction of loiasis. Specifically, DEET-containing insect repellent, permethrin-soaked clothing, and thick, long-sleeved and long-legged clothing ought to be worn to decrease susceptibility to the bite of the mango or deer fly vector. Because the vector is day-biting, mosquito (bed) nets do not increase protection against loiasis.
Vector elimination strategies are an interesting consideration. It has been shown that the "Chrysops" vector has a limited flying range, but vector elimination efforts are not common, likely because the insects bite outdoors and have a diverse, if not long, range, living in the forest and biting in the open, as mentioned in the vector section.
No vaccine has been developed for loiasis and there is little report on this possibility.
The standard of care is administration of antifilarial drugs, most commonly Ivermectin or diethyl-carbamazine (DEC). The most efficacious dose in all nematode and parasitic infections is 200 µg/kg of ivermectin. There has also been other various anthelminthic drugs used, such as mebendazole, levamisole, albendazole and thiabendazole. In worst-case scenarios, surgery may be necessary to remove nematodes from the abdomen or chest. However, mild cases usually do not require treatment.
If complications of helminthiasis, such as intestinal obstruction occur, emergency surgery may be required. Patients who require non-emergency surgery, for instance for removal of worms from the biliary tree, can be pre-treated with the anthelmintic drug albendazole.
Anthelmintics such as diethylcarbamazine and albendazole have shown promise in the treatment of "Brugia timori" filariasis. Some researchers are confident that "Brugia timori" filariasis may be an eradicable disease. Related filarial nematodes have been found highly sensitive to elimination of their endosymbiotic Wolbachia bacteria, and this may be a powerful attack route against "Brugia timori" as well.
Parasitic worms and nematodes regulate many immune pathways of their host in order to increase their chances of survival. For example, molecules secreted by "Acanthocheilonema vitae" actually limit host effective immune mechanisms. These molecules are called excretory-secretory products. An effective excretory-secretory product released from "Acanthochelionema vitae" is called ES-62, which can affect multiple immune system cell types. ES-62 has anti-inflammatory effects when subjected to mice. The anti-inflammatory effect occurs because of a phosphorylcholine (PC)-containing moiety and signal transduction. More research needs to be completed; however there is some evidence that "Acanthocheilonema vitae" may have anti-inflammatory effects, and should be researched further.
Prevention focuses on protecting against mosquito bites in endemic regions. Insect repellents and mosquito nets are useful to protect against mosquito bites. Public education efforts must also be made within the endemic areas of the world to successfully lower the prevalence of "W. bancrofti" infections.
Malaria is treated with antimalarial medications; the ones used depends on the type and severity of the disease. While medications against fever are commonly used, their effects on outcomes are not clear.
Simple or uncomplicated malaria may be treated with oral medications. The most effective treatment for "P. falciparum" infection is the use of artemisinins in combination with other antimalarials (known as artemisinin-combination therapy, or ACT), which decreases resistance to any single drug component. These additional antimalarials include: amodiaquine, lumefantrine, mefloquine or sulfadoxine/pyrimethamine. Another recommended combination is dihydroartemisinin and piperaquine. ACT is about 90% effective when used to treat uncomplicated malaria. To treat malaria during pregnancy, the WHO recommends the use of quinine plus clindamycin early in the pregnancy (1st trimester), and ACT in later stages (2nd and 3rd trimesters). In the 2000s (decade), malaria with partial resistance to artemisins emerged in Southeast Asia. Infection with "P. vivax", "P. ovale" or "P. malariae" usually do not require hospitalization. Treatment of "P. vivax" requires both treatment of blood stages (with chloroquine or ACT) and clearance of liver forms with primaquine. Treatment with tafenoquine prevents relapses after confirmed "P. vivax" malaria.
Severe and complicated malaria are almost always caused by infection with "P. falciparum". The other species usually cause only febrile disease. Severe and complicated malaria are medical emergencies since mortality rates are high (10% to 50%). Cerebral malaria is the form of severe and complicated malaria with the worst neurological symptoms.
Recommended treatment for severe malaria is the intravenous use of antimalarial drugs. For severe malaria, parenteral artesunate was superior to quinine in both children and adults. In another systematic review, artemisinin derivatives (artemether and arteether) were as efficacious as quinine in the treatment of cerebral malaria in children. Treatment of severe malaria involves supportive measures that are best done in a critical care unit. This includes the management of high fevers and the seizures that may result from it. It also includes monitoring for poor breathing effort, low blood sugar, and low blood potassium.
Drug resistance poses a growing problem in 21st-century malaria treatment. Resistance is now common against all classes of antimalarial drugs apart from artemisinins. Treatment of resistant strains became increasingly dependent on this class of drugs. The cost of artemisinins limits their use in the developing world. Malaria strains found on the Cambodia–Thailand border are resistant to combination therapies that include artemisinins, and may, therefore, be untreatable. Exposure of the parasite population to artemisinin monotherapies in subtherapeutic doses for over 30 years and the availability of substandard artemisinins likely drove the selection of the resistant phenotype. Resistance to artemisinin has been detected in Cambodia, Myanmar, Thailand, and Vietnam, and there has been emerging resistance in Laos.
The dramatic response to a commonly used drug for filaria (diethylcarbamazine) almost confirms the diagnosis. No universal treatment guidelines have been established for tropical pulmonary eosinophilia. The antifilarial diethylcarbamazine (6 mg/kg/day in three divided doses for 21 days remains the main therapeutic agent, and is generally well tolerated. Reported side effects include headache, fever, pruritus and gastrointestinal upset. The eosinophil count often falls dramatically within 7–10 days of starting treatment.
Inclusion of NTDs into initiatives for malaria, HIV/AIDS, and tuberculosis, as well as integration of NTD treatment programs, may have advantages given the strong link between these diseases and NTDs. Some neglected tropical diseases share common vectors (sandflies, black flies, and mosquitos). Both medicinal and vector control efforts may be combined.
A four-drug rapid-impact package has been proposed for widespread proliferation. Administration may be made more efficient by targeting multiple diseases at once, rather than separating treatment and adding work to community workers. This package is estimated to cost US$0.40 per patient. When compared to stand-alone treatment, the savings are estimated to be 26–47%. While more research must be done in order to understand how NTDs and other diseases interact in both the vector and the human stages, safety assessments have so far produced positive results.
Many neglected tropical diseases and other prevalent diseases share common vectors, creating another opportunity for treatment and control integration. One such example of this is malaria and lymphatic filariasis. Both diseases are transmitted by the same or related mosquito vectors. Vector control, through the distribution of insecticide treated nets, reduces the human contact with a wide variety of disease vectors. Integrated vector control may also alleviate pressure on mass drug administration, especially with respect to rapidly evolving drug resistance. Combining vector control and mass drug administration deemphasizes both, making each less susceptible to resistance evolution.
There are no treatment modalities for acute and chronic chikungunya that currently exist. Majority of treatment plans use supportive and symptomatic care like analgesics for pain and anti-inflammatories for inflammation caused by arthritis. In acute stages of this virus, rest, antipyretics and analgesics are used to subside symptoms. Most use non-steroidal anti-inflammatory drugs (NSAIDs). In some cases, joint pain may resolve from treatment but stiffness remains.
Biotechnology companies in the developing world have targeted neglected tropical diseases due to need to improve global health.
Mass drug administration is considered a possible method for eradication, especially for lymphatic filariasis, onchocerciasis, and trachoma, although drug resistance is a potential problem. According to Fenwick, Pfizer donated 70 million doses of drugs in 2011 to eliminate trachoma through the International Trachoma Initiative. Merck has helped The African Programme for the Control of Onchocerciasis (APOC) and Oncho Elimination Programme for the Americas to greatly diminished the effect of Onchocerciasis by donating ivermectin. Merck KGaA pledged to give 200 million tablets of praziquantel over 10 years, the only cure for schistosomiasis. GlaxoSmithKline has donated two billion tablets of medicine for lymphatic filariasis and pledged 400 million deworming tablets per year for five years in 2010. Johnson & Johnson has pledged 200 million deworming tablets per year. Novartis has pledged leprosy treatment, EISAI pledged two billion tablets to help treat lymphatic filariasis.