Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Currently other medications do not yet have evidence to support their use. Ribavirin is an antiviral drug which does not appear to be effective for bronchiolitis. Antibiotics are often given in case of a bacterial infection complicating bronchiolitis, but have no effect on the underlying viral infection. Corticosteroids have no proven benefit in bronchiolitis treatment and are not advised. DNAse has not been found to be effective.
Treatment of bronchiolitis is usually focused on the symptoms instead of the infection itself since the infection will run its course and complications are typically from the symptoms themselves. Without active treatment half of cases will go away in 13 days and 90% in three weeks.
Measures for which the evidence is unclear include nebulized epinephrine, nasal suctioning, and nebulized hypertonic saline. Treatments which the evidence does not support include salbutamol, steroids, antibiotics, antivirals, chest physiotherapy, and cool mist.
Most patients recover with corticosteroid therapy. A standardized approach to dosing starting at 0.75 mg/kg and weaning over 24 weeks has been shown to reduce total corticosteroid exposure without affecting outcome.
About two thirds of patients recover with corticosteroid therapy: the usual corticosteroid administered is prednisolone in Europe and prednisone in the USA; these differ by only one functional group and have the same clinical effect. The corticosteroid is initially administered in high dosage, typically 50 mg per day tapering down to zero over a six-month to one-year period. If the corticosteroid treatment is halted too quickly the disease may return. Other medications must be taken to counteract side effects of the steroid.
Corticosteroids are usually used in inhaled form, but may also be used as tablets to treat and prevent acute exacerbations. While inhaled corticosteroids (ICSs) have not shown benefit for people with mild COPD, they decrease acute exacerbations in those with either moderate or severe disease. By themselves, they have no effect on overall one-year mortality. Whether they affect the progression of the disease is unknown. When used in combination with a LABA, they may decrease mortality compared to either ICSs or LABA alone. Inhaled steroids are associated with increased rates of pneumonia. Long-term treatment with steroid tablets is associated with significant side effects.
Inhaled bronchodilators are the primary medications used, and result in a small overall benefit. The two major types are β agonists and anticholinergics; both exist in long-acting and short-acting forms. They reduce shortness of breath, wheeze, and exercise limitation, resulting in an improved quality of life. It is unclear if they change the progression of the underlying disease.
In those with mild disease, short-acting agents are recommended on an as needed basis. In those with more severe disease, long-acting agents are recommended. Long-acting agents partly work by improving hyperinflation. If long-acting bronchodilators are insufficient, then inhaled corticosteroids are typically added. With respect to long-acting agents, if tiotropium (a long-acting anticholinergic) or long-acting beta agonists (LABAs) are better is unclear, and trying each and continuing the one that worked best may be advisable. Both types of agent appear to reduce the risk of acute exacerbations by 15–25%. While both may be used at the same time, any benefit is of questionable significance.
Several short-acting β agonists are available, including salbutamol (albuterol) and terbutaline. They provide some relief of symptoms for four to six hours. Long-acting β agonists such as salmeterol, formoterol, and indacaterol are often used as maintenance therapy. Some feel the evidence of benefits is limited while others view the evidence of benefit as established. Long-term use appears safe in COPD with adverse effects include shakiness and heart palpitations. When used with inhaled steroids they increase the risk of pneumonia. While steroids and LABAs may work better together, it is unclear if this slight benefit outweighs the increased risks. Indacaterol requires an inhaled dose once a day, and is as effective as the other long-acting β agonist drugs that require twice-daily dosing for people with stable COPD.
Two main anticholinergics are used in COPD, ipratropium and tiotropium. Ipratropium is a short-acting agent, while tiotropium is long-acting. Tiotropium is associated with a decrease in exacerbations and improved quality of life, and tiotropium provides those benefits better than ipratropium. It does not appear to affect mortality or the overall hospitalization rate. Anticholinergics can cause dry mouth and urinary tract symptoms. They are also associated with increased risk of heart disease and stroke. Aclidinium, another long acting agent, reduces hospitalizations associated with COPD and improves quality of life. Aclinidinium has been used as an alternative to tiotropium, but which drug is more effective is not known.
This disease is irreversible and severe cases often require a lung transplant. Transplant recipients are at risk for re-developing the disease, as bronchiolitis obliterans is a common complication of chronic rejection. Evaluation of interventions to prevent bronchiolitis obliterans relies on early detection of abnormal spirometry results or unusual decreases in repeated measurements.
A multi-center study has shown the combination of inhaled fluticasone propionate, oral montelukast, and oral azithromycin may be able to stabilize the disease and slow disease progression. This has only been studied in patients who previously underwent hematopoietic stem cell transplantation.
"N"-Acetylcysteine (NAC) is a precursor to glutathione, an antioxidant. It has been hypothesized that treatment with high doses of NAC may repair an oxidant–antioxidant imbalance that occurs in the lung tissue of patients with IPF. In the first clinical trial of 180 patients (IFIGENIA), NAC was shown in previous study to reduce the decline in VC and DLCO over 12 months of follow-up when used in combination with prednisone and azathioprine (triple therapy).
More recently, a large randomized, controlled trial (PANTHER-IPF) was undertaken by the National Institutes of Health (NIH) in the USA to evaluate triple therapy and NAC monotherapy in IPF patients. This study found that the combination of prednisone, azathioprine, and NAC increased the risk of death and hospitalizations and the NIH announced in 2012 that the triple-therapy arm of the PANTHER-IPF study had been terminated early.
This study also evaluated NAC alone and the results for this arm of the study were published in May 2014 in the New England Journal of Medicine, concluding that "as compared with placebo, acetylcysteine offered no significant benefit with respect to the preservation of FVC in patients with idiopathic pulmonary fibrosis with mild-to-moderate impairment in lung function".
A Cochrane review comparing pirfenidone with placebo, found a reduced risk of disease progression by 30%. FVC or VC was also improved, even if a mild slowing in FVC decline could be demonstrated only in one of the two CAPACITY trials. A third study, which was completed in 2014 found reduced decline in lung function and IPF disease progression. The data from the ASCEND study were also pooled with data from the two CAPACITY studies in a pre-specified analysis which showed that pirfenidone reduced the risk of death by almost 50% over one year of treatment.
Prevention is by not smoking and avoiding other lung irritants. Frequent hand washing may also be protective. Treatment of acute bronchitis typically involves rest, paracetamol (acetaminophen), and NSAIDs to help with the fever. Cough medicine has little support for its use and is not recommended in children less than six years of age. There is tentative evidence that salbutamol may be useful in those with wheezing; however, it may result in nervousness and tremors. Antibiotics should generally not be used. An exception is when acute bronchitis is due to pertussis. Tentative evidence supports honey and pelargonium to help with symptoms. Getting plenty of rest and fluids is also often recommended.
Specific pretreatments, drugs to prevent chemically induced lung injuries due to respiratory airway toxins, are not available. Analgesic medications, oxygen, humidification, and ventilator support currently constitute standard therapy. In fact, mechanical ventilation remains the therapeutic mainstay for acute inhalation injury. The cornerstone of treatment is to keep the PaO2 > 60 mmHg (8.0 kPa), without causing injury to the lungs with excessive O2 or volutrauma. Pressure control ventilation is more versatile than volume control, although breaths should be volume limited, to prevent stretch injury to the alveoli. Positive end-expiratory pressure (PEEP) is used in mechanically ventilated patients with ARDS to improve oxygenation. Hemorrhaging, signifying substantial damage to the lining of the airways and lungs, can occur with exposure to highly corrosive chemicals and may require additional medical interventions. Corticosteroids are sometimes administered, and bronchodilators to treat bronchospasms. Drugs that reduce the inflammatory response, promote healing of tissues, and prevent the onset of pulmonary edema or secondary inflammation may be used following severe injury to prevent chronic scarring and airway narrowing.
Although current treatments can be administered in a controlled hospital setting, many hospitals are ill-suited for a situation involving mass casualties among civilians. Inexpensive positive-pressure devices that can be used easily in a mass casualty situation, and drugs to prevent inflammation and pulmonary edema are needed. Several drugs that have been approved by the FDA for other indications hold promise for treating chemically induced pulmonary edema. These include β2-agonists, dopamine, insulin, allopurinol, and non-steroidal anti-inflammatory drugs (NSAIDs), such as ibuprofen. Ibuprofen is particularly appealing because it has an established safety record and can be easily administered as an initial intervention. Inhaled and systemic forms of β2-agonists used in the treatment of asthma and other commonly used medications, such as insulin, dopamine, and allopurinol have also been effective in reducing pulmonary edema in animal models but require further study. A recent study documented in the "AANA Journal" discussed the use of volatile anesthetic agents, such as sevoflurane, to be used as a bronchodilator that lowered peak airway pressures and improved oxygenation. Other promising drugs in earlier stages of development act at various steps in the complex molecular pathways underlying pulmonary edema. Some of these potential drugs target the inflammatory response or the specific site(s) of injury. Others modulate the activity of ion channels that control fluid transport across lung membranes or target surfactant, a substance that lines the air sacs in the lungs and prevents them from collapsing. Mechanistic information based on toxicology, biochemistry, and physiology may be instrumental in determining new targets for therapy. Mechanistic studies may also aid in the development of new diagnostic approaches. Some chemicals generate metabolic byproducts that could be used for diagnosis, but detection of these byproducts may not be possible until many hours after initial exposure. Additional research must be directed at developing sensitive and specific tests to identify individuals quickly after they have been exposed to varying levels of chemicals toxic to the respiratory tract.
Currently there are no clinically approved agents that can reduce pulmonary and airway cell dropout and avert the transition to pulmonary and /or airway fibrosis.
Macrolide antibiotics, such as erythromycin, are an effective treatment for DPB when taken regularly over an extended period of time. Clarithromycin or roxithromycin are also commonly used. The successful results of macrolides in DPB and similar lung diseases stems from managing certain symptoms through immunomodulation (adjusting the immune response), which can be achieved by taking the antibiotics in low doses. Treatment consists of daily oral administration of erythromycin for two to three years, an extended period that has been shown to dramatically improve the effects of DPB. This is apparent when an individual undergoing treatment for DPB, among a number of disease-related remission criteria, has a normal neutrophil count detected in BAL fluid, and blood gas (an arterial blood test that measures the amount of oxygen and carbon dioxide in the blood) readings show that free oxygen in the blood is within the normal range. Allowing a temporary break from erythromycin therapy in these instances has been suggested, to reduce the formation of macrolide-resistant "P. aeruginosa". However, DPB symptoms usually return, and treatment would need to be resumed. Although highly effective, erythromycin may not prove successful in all individuals with the disease, particularly if macrolide-resistant "P. aeruginosa" is present or previously untreated DPB has progressed to the point where respiratory failure is occurring.
With erythromycin therapy in DPB, great reduction in bronchiolar inflammation and damage is achieved through suppression of not only neutrophil proliferation, but also lymphocyte activity and obstructive mucus and water secretions in airways. The antibiotic effects of macrolides are not involved in their beneficial effects toward reducing inflammation in DPB. This is evident because the treatment dosage is much too low to fight infection, and in DPB cases with the occurrence of macrolide-resistant "P. aeruginosa", erythromycin therapy still reduces inflammation.
A number of factors are involved in suppression of inflammation by erythromycin and other macrolides. They are especially effective at inhibiting the proliferation of neutrophils, by diminishing the ability of interleukin 8 and leukotriene B4 to attract them. Macrolides also reduce the efficiency of adhesion molecules that allow neutrophils to stick to bronchiolar tissue linings. Mucus production in the airways is a major culprit in the morbidity and mortality of DPB and other respiratory diseases. The significant reduction of inflammation in DPB attributed to erythromycin therapy also helps to inhibit the production of excess mucus.
ILD is not a single disease, but encompasses many different pathological processes. Hence treatment is different for each disease.
If a specific occupational exposure cause is found, the person should avoid that environment. If a drug cause is suspected, that drug should be discontinued.
Many cases due to unknown or connective tissue-based causes are treated with corticosteroids, such as prednisolone. Some people respond to immunosuppressant treatment. Patients with a low level of oxygen in the blood may be given supplemental oxygen.
Pulmonary rehabilitation appears to be useful. Lung transplantation is an option if the ILD progresses despite therapy in appropriately selected patients with no other contraindications.
On October 16, 2014, the Food and Drug Administration approved a new drug for the treatment of Idiopathic Pulmonary Fibrosis (IPF). This drug, Ofev (nintedanib), is marketed by Boehringer Ingelheim Pharmaceuticals, Inc. This drug has been shown to slow the decline of lung function although the drug has not been shown to reduce mortality or improve lung function. The estimated cost of the drug per year is approximately $94,000.
Evidence suggests that the decline in lung function observed in chronic bronchitis may be slowed with smoking cessation. Chronic bronchitis is treated symptomatically and may be treated in a nonpharmacologic manner or with pharmacologic therapeutic agents. Typical nonpharmacologic approaches to the management of COPD including bronchitis may include: pulmonary rehabilitation, lung volume reduction surgery, and lung transplantation. Inflammation and edema of the respiratory epithelium may be reduced with inhaled corticosteroids. Wheezing and shortness of breath can be treated by reducing bronchospasm (reversible narrowing of smaller bronchi due to constriction of the smooth muscle) with bronchodilators such as inhaled long acting β-adrenergic receptor agonists (e.g., salmeterol) and inhaled anticholinergics such as ipratropium bromide or tiotropium bromide. Mucolytics may have a small therapeutic effect on acute exacerbations of chronic bronchitis. Supplemental oxygen is used to treat hypoxemia (too little oxygen in the blood) and has been shown to reduce mortality in chronic bronchitis patients. Oxygen supplementation can result in decreased respiratory drive, leading to increased blood levels of carbon dioxide (hypercapnia) and subsequent respiratory acidosis.
Flock worker's lung can be prevented with engineering controls that protect workers from inhaling flock. Engineering controls to prevent inhalation of flock can include using guillotine cutters rather than rotary cutters, and ensuring that blades are sharp, since dull blades shear off more respirable particles. Flocking plants have also implemented medical surveillance programs for workers to diagnose cases at an earlier stage. Another technique for preventing flock worker's lung is cleaning the workplace with alternatives to compressed air in order to avoid resuspending particulates in the air.
The best treatment is to avoid the provoking allergen, as chronic exposure can cause permanent damage. Corticosteroids such as prednisolone may help to control symptoms but may produce side-effects.
Evidence does not support the general use of antibiotics in acute bronchitis. While some evidence suggests antibiotics speed up resolution of the cough by about 12 hours there is a greater risk of gastrointestinal problems and no change in longer term outcomes. Antibiotics use also leads to the promotion of antibiotic-resistant bacteria, which increase morbidity and mortality.
There is evidence to show that steroids given to babies less than 8 days old can prevent bronchopulmonary dysplasia. However, the risks of treatment may outweigh the benefits.
It is unclear if starting steroids more than 7 days after birth is harmful or beneficial. It is thus recommended that they only be used in those who cannot be taken off of a ventilator.
Flock worker's lung is generally treated by removing the individual from the environment where they are inhaling flock. Symptoms generally improve within days to weeks after stopping exposure. The benefits of glucocorticoid therapy are unclear.
Flock worker's lung may raise the risk for lung cancer, but the connection is a topic of research as of 2015. The disease can be subacute or develop over long periods of exposure.
Untreated DPB leads to bronchiectasis, respiratory failure, and death. A journal report from 1983 indicated that untreated DPB had a five-year survival rate of 62.1%, while the 10-year survival rate was 33.2%. With erythromycin treatment, individuals with DPB now have a much longer life expectancy due to better management of symptoms, delay of progression, and prevention of associated infections like "P. aeruginosa". The 10-year survival rate for treated DPB is about 90%. In DPB cases where treatment has resulted in significant improvement, which sometimes happens after about two years, treatment has been allowed to end for a while. However, individuals allowed to stop treatment during this time are closely monitored. As DPB has been proven to recur, erythromycin therapy must be promptly resumed once disease symptoms begin to reappear. In spite of the improved prognosis when treated, DPB currently has no known cure.
Most cases are self-limited and resolve themselves in a few weeks.
The following are precautionary measures that can be taken to avoid the spread of bagassosis:
1. Dust control-prevention /suppression of dust such as wet process, enclosed apparatus, exhaust ventilation etc. should be used
2. Personal protection- masks/ respirators
3. Medical control- initial medical examination & periodical checkups of workers
4. Bagasse control- keep moisture content above 20% and spray bagasse with 2% propionic acid
Many people with this condition have no symptoms. Treatment is aimed at the health problems causing the lung problem and the complications caused by the disorder.
Fast-acting drugs for RA include aspirin and corticosteroids, which alleviate pain and reduce inflammation. Slow-acting drugs termed disease modifying antirheumatic drugs (DMARDs), include gold, methotrexate and hydroxychloroquine (Plaquenil), which promote disease remission and prevent progressive joint destruction. In patients with less severe RA, pain relievers, anti-inflammatory drugs and physical rest are sufficient to improve quality of life. In patients with joint deformity, surgery is the only alternative for recovering articular function.
Prognosis is related to the underlying disorder and the type and severity of lung disease. In severe cases, lung transplantation can be considered. This is more common in cases of bronchiolitis obliterans, pulmonary fibrosis, or pulmonary hypertension. Most complications are not fatal, but does reduce life expectancy to an estimated 5 to 10 years.
Radiation (radiotherapy) is frequently used for the treatment of many cancer types, and can be highly effective. Unfortunately, it also can lead to pulmonary toxicity as a side effect.
Radiotherapists are well aware of possible pulmonary toxicity, and take a number of precautions to minimise the incidence of this side effect. There are research efforts to possibly eliminate this side effect in the future.
Within all classes of medicinal drugs that possibly can lead to pulmonary toxicity as a side effect, most pulmonary toxicity is due to chemotherapy for cancer.
Many medicinal drugs can lead to pulmonary toxicity. A few medicinal drugs can lead to pulmonary toxicity frequently (in medicine defined by international regulatory authorities such as the U.S. Food and Drug Administration and the EMEA [European Union] as > 1% and 10%). These medicinal drugs can include gold and nitrofurantoin, as well as the following drugs used in chemotherapy for cancer: Methotrexate, the taxanes (paclitaxel and docetaxel), gemcitabine, bleomycin, mitomycin C, busulfan, cyclophosphamide, chlorambucil, and nitrosourea (e.g., carmustine).
Also, some medicinal drugs used in cardiovascular medicine can lead to pulmonary toxicity frequently or very frequently. These include above all amiodarone, as well as beta blockers, ACE inhibitors (however, pulmonary toxicity of ACE inhibitors usually lasts only 3–4 months and then usually disappears by itself), procainamide, quinidine, tocainide, and minoxidil.
Both oncologists and cardiologists are well aware of possible pulmonary toxicity.
Oral antibiotics, rest, simple analgesics, and fluids usually suffice for complete resolution. However, those with other medical conditions, the elderly, or those with significant trouble breathing may require more advanced care. If the symptoms worsen, the pneumonia does not improve with home treatment, or complications occur, hospitalization may be required. Worldwide, approximately 7–13% of cases in children result in hospitalization, whereas in the developed world between 22 and 42% of adults with community-acquired pneumonia are admitted. The CURB-65 score is useful for determining the need for admission in adults. If the score is 0 or 1, people can typically be managed at home; if it is 2, a short hospital stay or close follow-up is needed; if it is 3–5, hospitalization is recommended. In children those with respiratory distress or oxygen saturations of less than 90% should be hospitalized. The utility of chest physiotherapy in pneumonia has not yet been determined. Non-invasive ventilation may be beneficial in those admitted to the intensive care unit. Over-the-counter cough medicine has not been found to be effective nor has the use of zinc in children. There is insufficient evidence for mucolytics.