Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The infection is treated with antibiotics. Intravenous fluids and oxygen may be needed to stabilize the patient. There is a significant disparity between the untreated mortality and treated mortality rates: 10-60% untreated versus close to 0% treated with antibiotics within 8 days of initial infection. Tetracycline, Chloramphenicol, and doxycycline are commonly used. Infection can also be prevented by vaccination.
Some of the simplest methods of prevention and treatment focus on preventing infestation of body lice. Complete change of clothing, washing the infested clothing in hot water, and in some cases also treating recently used bedsheets all help to prevent typhus by removing potentially infected lice. Clothes also left unworn and unwashed for 7 days also cause both lice and their eggs to die, as they have no access to their human host. Another form of lice prevention requires dusting infested clothing with a powder consisting of 10% DDT, 1% malathion, or 1% permethrin, which kill lice and their eggs.
When meningococcal disease is suspected, treatment must be started "immediately" and should not be delayed while waiting for investigations. Treatment in primary care usually involves prompt intramuscular administration of benzylpenicillin, and then an urgent transfer to hospital (hopefully, an academic level I medical center, or at least a hospital with round the clock neurological care, ideally with neurological intensive and critical care units) for further care. Once in the hospital, the antibiotics of choice are usually IV broad spectrum 3rd generation cephalosporins, e.g., cefotaxime or ceftriaxone. Benzylpenicillin and chloramphenicol are also effective. Supportive measures include IV fluids, oxygen, inotropic support, e.g., dopamine or dobutamine and management of raised intracranial pressure. Steroid therapy may help in some adult patients, but is unlikely to affect long term outcomes.
Complications following meningococcal disease can be divided into early and late groups. Early complications include: raised intracranial pressure, disseminated intravascular coagulation, seizures, circulatory collapse and organ failure. Later complications are: deafness, blindness, lasting neurological deficits, reduced IQ, and gangrene leading to amputations.
Vaccination is the only known method to prevent the development of tumors when chickens are infected with the virus. However, administration of vaccines does not prevent transmission of the virus, i.e., the vaccine is not sterilizing. However, it does reduce the amount of virus shed in the dander, hence reduces horizontal spread of the disease. Marek's disease does not spread vertically. The vaccine was introduced in 1970 and the scientist credited with its development is Dr. Ben Roy Burmester and Dr. Frank J Siccardi. Before that, Marek's disease caused substantial revenue loss in the poultry industries of the United States and the United Kingdom. The vaccine can be administered to one-day-old chicks through subcutaneous inoculation or by "in ovo" vaccination when the eggs are transferred from the incubator to the hatcher. "In ovo" vaccination is the preferred method, as it does not require handling of the chicks and can be done rapidly by automated methods. Immunity develops within two weeks.
The vaccine originally contained the antigenically similar turkey herpesvirus, which is serotype 3 of MDV. However, because vaccination does not prevent infection with the virus, the Marek's disease virus has evolved increased virulence and resistance to this vaccine. As a result, current vaccines use a combination of vaccines consisting of HVT and gallid herpesvirus type 3 or an attenuated MDV strain, CVI988-Rispens (ATCvet code: ).
Infections are treated with antibiotics, particularly doxycycline, and the acute symptoms appear to respond to these drugs.
Bright's disease was historically 'treated' with warm baths, blood-letting, squill, digitalis, mercuric compounds, opium, diuretics, laxatives, and dietary therapy, including abstinence from alcoholic drinks, cheese and red meat. Arnold Ehret was diagnosed with Bright's disease and pronounced incurable by 24 of Europe's most respected doctors; he designed "The Mucusless Diet Healing System", which apparently cured his illness. William Howard Hay, MD had the illness and, it is claimed, cured himself using the Hay diet.
Prevention is through use of Stock coryza-free birds. In other areas culling of the whole flock is a good means of the disease control. Bacterin also is used at a dose of two to reduce brutality of the disease. Precise exposure has also has been used but it should be done with care. Vaccination of the chicks is done in areas with high disease occurrence. Treatment is done by using antibiotics such as erythromycin, Dihydrostreptomycin, Streptomycin sulphonamides, tylosin and Flouroquinolones .
Currently, antibiotic drugs such as penicillin or tetracycline are the only effective methods for disease treatment. Within wild populations, disease control consists of reducing the amount of bacterial spores present in the environment. This can be done by removing contaminated carcasses and scat.
No serious long-term effects are known for this disease, but preliminary evidence suggests, if such symptoms do occur, they are less severe than those associated with Lyme disease.
Treatment is with penicillin, ampicillin, tetracycline, or co-trimoxazole for one to two years. Any treatment lasting less than a year has an approximate relapse rate of 40%. Recent expert opinion is that Whipple's disease should be treated with doxycycline with hydroxychloroquine for 12 to 18 months. Sulfonamides (sulfadiazine or sulfamethoxazole) may be added for treatment of neurological symptoms.
There is no vaccine for SVD. Prevention measures are similar to those for foot-and-mouth disease: controlling animals imported from infected areas, and sanitary disposal of garbage from international aircraft and ships, and thorough cooking of garbage. Infected animals should be placed in strict quarantine. Eradication measures for the disease include quarantining infected areas, depopulation and disposal of infected and contact pigs, and cleaning and disinfecting
contaminated premises.
In laboratory animals, prevention includes a low-stress environment, an adequate amount of nutritional feed, and appropriate sanitation measurements. Because animals likely ingest bacterial spores from contaminated bedding and feed, regular cleaning is a helpful method of prevention. No prevention methods are currently available for wild animal populations.
For those with type-I and most type-III, enzyme replacement treatment with intravenous recombinant glucocerebrosidase can decrease liver and spleen size, reduce skeletal abnormalities, and reverse other manifestations. This treatment costs about US$200,000 annually for a single person and should be continued for life. The rarity of the disease means dose-finding studies have been difficult to conduct, so controversy remains over the optimal dose and dosing frequency. Due to the low incidence, this has become an orphan drug in many countries, meaning a government recognizes and accommodates the financial constraints that limit research into drugs that address a small population.
The first drug for Gaucher's was alglucerase (Ceredase), which was a version of glucocerebrosidase that was harvested from human placental tissue and then modified with enzymes. It was approved by the FDA in 1991 and has been withdrawn from the market due to the approval of similar drugs made with recombinant DNA technology instead of being harvested from tissue; drugs made recombinantly are preferable, since there is no concern about diseases being transmitted from the tissue used in harvesting, there are fewer risks of variations in enzyme structure from batch to batch, and they are less expensive to manufacture.
Available recombinant glucocerebrosidases are:
- Imiglucerase (approved in 1995)
- Velaglucerase (approved in 2010)
- Taliglucerase alfa (Elelyso) (approved in 2012)
- Eliglustat (Cerdelga) (approved in 2014)
Miglustat is a small molecule, orally available drug that was first approved for Gaucher's Disease in Europe in 2002. It works by preventing the formation of glucocerebroside, the substance that builds up and causes harm in Gaucher's. This approach is called substrate reduction therapy.
Adult-onset Still's disease is treated with anti-inflammatory drugs. Steroids such as prednisone are used to treat severe symptoms of Still's. Other commonly used medications include hydroxychloroquine, penicillamine, azathioprine, methotrexate, etanercept, anakinra, cyclophosphamide, adalimumab, rituximab, and infliximab.
Newer drugs target interleukin-1 (IL-1), particularly IL-1β. A randomized, multicenter trial reported better outcomes in a group of 12 patients treated with anakinra than in a group of 10 patients taking other disease-modifying antirheumatic drugs. Other anti-IL1β drugs are being developed, including canakinumab and rilonacept.
The condition "juvenile-onset Still's disease" is now usually grouped under juvenile rheumatoid arthritis. However, there is some evidence that the two conditions are closely related.
The first treatment for Fabry's disease was approved by the US FDA on April 24, 2003. Fabrazyme (agalsidase beta, or Alpha-galactosidase) was licensed to the Genzyme Corporation. It is an enzyme replacement therapy (ERT) designed to provide the enzyme the patient is missing as a result of a genetic malfunction. The drug is expensive — in 2012, Fabrazyme's annual cost was about US$200,000 per patient, which is unaffordable to many patients around the world without enough insurance. ERT is not a cure, but can allow improved metabolism and partially prevent disease progression, as well as potentially reverse some symptoms.
The pharmaceutical company Shire manufactures agalsidase alpha (which differs in the structure of its oligosaccharide side chains) under the brand name Replagal as a treatment for Fabry's disease, and was granted marketing approval in the EU in 2001. FDA approval was applied for the United States. However, Shire withdrew their application for approval in the United States in 2012, citing that the agency will require additional clinical trials before approval.
Clinically the two products are generally perceived to be similar in effectiveness. Both are available in Europe and in many other parts of the world, but treatment costs remain very high.
Besides these drugs, a gene therapy treatment is also available from the Canadian Institutes of Health. Other treatments (oral chaperone therapy -Amicus-, plant-based ERT -Protalix-, substrate reduction therapy -Sanofi-Genzyme-, bio-better ERT -Codexis-, gene editing solution -Sangamo- are currently being researched.
Pain associated with Fabry disease may be partially alleviated by ERT in some patients, but pain management regimens may also include analgesics, anticonvulsants, and nonsteroidal anti-inflammatory drugs, though the latter are usually best avoided in renal disease.
The twins require the use of wheelchairs for mobility and are unable to speak without the assistance of electronic speaking aids. They experience persistent and painful muscle spasms which are worsened by emotional distress. They are currently living with their parents, with the assistance of hospice workers. Doctors continue to administer tests to the twins in search of a treatment.
Meningitis A,C,Y and W-135 vaccines can be used for large-scale vaccination programs when an outbreak of meningococcal disease occurs in Africa and other regions of the world. Whenever sporadic or cluster cases or outbreaks of meningococcal disease occur in the US, chemoprophylaxis is the principal means of preventing secondary cases in household and other close contacts of individuals with invasive disease. Meningitis A,C,Y and W-135 vaccines rarely may be used as an adjunct to chemoprophylaxis,1 but only in situations where there is an ongoing risk of exposure (e.g., when cluster cases or outbreaks occur) and when a serogroup contained in the vaccine is involved.
It is important that clinicians promptly report all cases of suspected or confirmed meningococcal disease to local public health authorities and that the serogroup of the meningococcal strain involved be identified. The effectiveness of mass vaccination programs depends on early and accurate recognition of outbreaks. When a suspected outbreak of meningococcal disease occurs, public health authorities will then determine whether mass vaccinations (with or without mass chemoprophylaxis) is indicated and delineate the target population to be vaccinated based on risk assessment.
Current treatment is aimed at easing the symptoms, reducing inflammation, and controlling the immune system. The quality of the evidence for treating the oral ulcers associated with Behçet's disease, however, is poor.
High-dose corticosteroid therapy is often used for severe disease manifestations. Anti-TNF therapy such as infliximab has shown promise in treating the uveitis associated with the disease. Another Anti-TNF agent, etanercept, may be useful in people with mainly skin and mucosal symptoms.
Interferon alpha-2a may also be an effective alternative treatment, particularly for the genital and oral ulcers as well as ocular lesions. Azathioprine, when used in combination with interferon alpha-2b also shows promise, and colchicine can be useful for treating some genital ulcers, erythema nodosum, and arthritis.
Thalidomide has also been used due to its immune-modifying effect. Dapsone and rebamipide have been shown, in small studies, to have beneficial results for mucocutaneous lesions.
Given its rarity, the optimal treatment for acute optic neuropathy in Behçet's disease has not been established. Early identification and treatment is essential. Response to ciclosporin, periocular triamcinolone, and IV methylprednisone followed by oral prednisone has been reported although relapses leading to irreversible visual loss may occur even with treatment. Immunosuppressants such as interferon alpha and tumour necrosis factor antagonists may improve though not completely reverse symptoms of ocular Behçet's disease, which may progress over time despite treatment. When symptoms are limited to the anterior chamber of the eye prognosis is improved. Posterior involvement, particularly optic nerve involvement, is a poor prognostic indicator. Secondary optic nerve atrophy is frequently irreversible. Lumbar puncture or surgical treatment may be required to prevent optic atrophy in cases of intracranial hypertension refractory to treatment with immunomodulators and steroids.
IVIG could be a treatment for severe or complicated cases.
Brill–Zinser disease is a delayed relapse of epidemic typhus, caused by "Rickettsia prowazekii". After a patient contracts epidemic typhus from the fecal matter of an infected louse ("Pediculus humanus"), the rickettsia can remain latent and reactivate months or years later, with symptoms similar to or even identical to the original attack of typhus, including a maculopapular rash. This reactivation event can then be transmitted to other individuals through fecal matter of the louse vector, and form the focus for a new epidemic of typhus.
Although there is no known cure for Krabbe disease, bone marrow transplantation has been shown to benefit cases early in the course of the disease. Generally, treatment for the disorder is symptomatic and supportive. Physical therapy may help maintain or increase muscle tone and circulation. Cord blood transplants have been successful in stopping the disease as long as they are given before overt symptoms appear.
Acute treatment uses medications to treat any infection (normally antibiotics) and to reduce inflammation (normally aminosalicylate anti-inflammatory drugs and corticosteroids). When symptoms are in remission, treatment enters maintenance, with a goal of avoiding the recurrence of symptoms. Prolonged use of corticosteroids has significant side-effects; as a result, they are, in general, not used for long-term treatment. Alternatives include aminosalicylates alone, though only a minority are able to maintain the treatment, and many require immunosuppressive drugs. It has been also suggested that antibiotics change the enteric flora, and their continuous use may pose the risk of overgrowth with pathogens such as "Clostridium difficile".
Medications used to treat the symptoms of Crohn's disease include 5-aminosalicylic acid (5-ASA) formulations, prednisone, immunomodulators such as azathioprine (given as the prodrug for 6-mercaptopurine), methotrexate, infliximab, adalimumab, certolizumab and natalizumab. Hydrocortisone should be used in severe attacks of Crohn's disease. Biological therapies (biopharmaceuticals) are medications used to avoid long-term steroid use, decrease inflammation, and treat people who have fistulas with abscesses. The monoclonal antibody ustekinumab appears to be a safe treatment option, and may help people with moderate to severe active Crohn's disease. The long term safety and effectiveness of monoclonal antibody treatment is not known. The monoclonal antibody briakinumab is not effective for people with active Crohn's disease.
The gradual loss of blood from the gastrointestinal tract, as well as chronic inflammation, often leads to anemia, and professional guidelines suggest routinely monitoring for this. Adequate disease control usually improves anemia of chronic disease, but iron deficiency may require treatment with iron supplements. Guidelines vary as to how iron should be administered. Besides other, problems include a limitation in possible daily resorption and an increased growth of intestinal bacteria. Some advise parenteral iron as first line as it works faster, has fewer gastrointestinal side effects, and is unaffected by inflammation reducing enteral absorption.
Other guidelines advise oral iron as first line with parenteral iron reserved for those that fail to adequately respond as oral iron is considerably cheaper. All agree that severe anemia (hemoglobin under 10g/dL) should be treated with parenteral iron. Blood transfusion should be reserved for those who are cardiovascularly unstable, due to its relatively poor safety profile, lack of long term efficacy, and cost.
Pacheco's disease is an acute and often lethal infectious disease in psittacine birds. The disease is caused by a group of herpesviruses, "Psittacid herpesvirus 1" (PsHV-1), which consists of four genotypes. Birds which do not succumb to Pacheco's disease after infection with the virus become asymptomatic carriers that act as reservoirs of the infection. These persistently infected birds, often Macaws, Amazon parrots and some species of conures, shed the virus in feces and in respiratory and oral secretions. Outbreaks can occur when stress causes healthy birds who carry the virus to shed it. Birds generally become infected after ingesting the virus in contaminated material, and show signs of the disease within several weeks.
The main sign of Pacheco's disease is sudden death, sometimes preceded by a short, severe illness. If a bird survives Pacheco's disease following infection with PsHV-1 genotypes 1, 2 or 3, it may later develop internal papilloma disease in the gastrointestinal tract.
Susceptible parrot species include the African gray parrot, and cockatoo. Native Australian birds, such as the eclectus parrot, Bourke's parrot, and budgerigar are susceptible to Pacheco's disease, although the disease itself has not been found in Australia.
Certain lifestyle changes can reduce symptoms, including dietary adjustments, elemental diet, proper hydration, and smoking cessation. Diets that include higher levels of fiber and fruit are associated with reduced risk, while diets rich in total fats, polyunsaturated fatty acids, meat, and omega-6 fatty acids may increase the risk of Crohn's. Smoking may increase Crohn's disease; stopping is recommended. Eating small meals frequently instead of big meals may also help with a low appetite. To manage symptoms have a balanced diet with proper portion control. Fatigue can be helped with regular exercise, a healthy diet, and enough sleep. A food diary may help with identifying foods that trigger symptoms. Some people should follow a low fiber diet to control acute symptoms especially if fibrous foods cause symptoms. Some find relief in eliminating casein (protein found in cow's milk) and gluten (protein found in wheat, rye and barley) from their diets. They may have specific dietary intolerances (not allergies).
Surgical excision of fatty tissue deposits around joints (liposuction) has been used in some cases. It may temporarily relieve symptoms although recurrences often develop.
Common treatments for Dercum's disease is directed towards treating the individual symptoms. Pain relief medication may be administered to temporarily reduce the discomfort in the patient. Cortisone shots have also been shown to be effective in temporarily reducing the chronic pain. Surgical removal of the damaged adipose tissue can be effective, but often the disease will recur. Once a person has Dercum's disease then they will likely have pain for the rest of their life. Studies have only shown temporary pain relief in patients. Long term the person with Dercum's disease will need to take prescription drugs for pain relief to ensure quality of life. The disease will cause chronic and severe pain for the rest of a persons life. There are several holistic treatments for this disease. Acupuncture, hypnosis and cognitive behavior therapy have been attempted to help people with Dercum's disease.
Few convincing large studies on the treatment of Dercum's disease have been conducted. Most of the different treatment strategies that exist are based on case reports. Currently, there is a lack of scientific data on the use of integrative therapies for the treatment or prevention of Dercum's disease. Not enough studies have been done to substantiate that diet and supplements could help with the disease.
Treatment methods include the following modalities:
Pogosta disease is a viral disease, established to be identical with other diseases, Karelian fever and Ockelbo disease. The names are derived from the words Pogosta, Karelia and Ockelbo, respectively.
The symptoms of the disease include usually rash, as well as mild fever and other flu-like symptoms; in most cases the symptoms last less than 5 days. However, in some cases, the patients develop a painful arthritis. There are no known chemical agents available to treat the disease.
It has long been suspected that the disease is caused by a Sindbis-like virus, a positive-stranded RNA virus belonging to the Alphavirus genus and family Togaviridae. In 2002 a strain of Sindbis was isolated from patients during an outbreak of the Pogosta disease in Finland, confirming the hypothesis.
This disease is mainly found in the Eastern parts of Finland; a typical Pogosta disease patient is a middle-aged person who has been infected through a mosquito bite while picking berries in the autumn. The prevalence of the disease is about 100 diagnosed cases every year, with larger outbreaks occurring in 7-year intervals.