Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There are different opinions on the best treatment of DCIS. Surgical removal, with or without additional radiation therapy or tamoxifen, is the recommended treatment for DCIS by the National Cancer Institute. Surgery may be either a breast-conserving lumpectomy or a mastectomy (complete or partial removal of the affected breast). If a lumpectomy is used it is often combined with radiation therapy. Tamoxifen may be used as hormonal therapy if the cells show estrogen receptor positivity. Chemotherapy is not needed for DCIS since the disease is noninvasive.
While surgery reduces the risk of subsequent cancer, many people never develop cancer even without treatment and there associated side effects. There is no evidence comparing surgery with watchful waiting and some feel watchful waiting may be a reasonable option in certain cases.
Treatment of metastatic breast cancer is currently an active area of research. Several medications are in development or in phase I/II trials. Typically new medications and treatments are first tested in metastatic cancer before trials in primary cancer are attempted.
Another area of research is finding combination treatments which provide higher efficacy with reduced toxicity and side effects.
Experimental medications:
- sorafenib a combined Tyrosine protein kinases inhibitor.
Use of radiation therapy after lumpectomy provides equivalent survival rates to mastectomy, although there is a slightly higher risk of recurrent disease in the same breast in the form of further DCIS or invasive breast cancer. Systematic reviews (including a Cochrane review) indicate that the addition of radiation therapy to lumpectomy reduces recurrence of DCIS or later onset of invasive breast cancer in comparison with breast-conserving surgery alone, without affecting mortality. The Cochrane review did not find any evidence that the radiation therapy had any long-term toxic effects. While the authors caution that longer follow-up will be required before a definitive conclusion can be reached regarding long-term toxicity, they point out that ongoing technical improvements should further restrict radiation exposure in healthy tissues. They do recommend that comprehensive information on potential side effects is given to women who receive this treatment. The addition of radiation therapy to lumpectomy appears to reduce the risk of local recurrence to approximately 12%, of which approximately half will be DCIS and half will be invasive breast cancer; the risk of recurrence is 1% for women undergoing mastectomy.
Some patients with metastatic breast cancer opt to try alternative therapies such as vitamin therapy, homeopathic treatments, a macrobiotic diet, chiropractic or acupuncture. There is no evidence that any of these therapies are effective; they may be harmful, either because patients pass up effective conventional therapies such as chemotherapy or anti-estrogen therapy in favor of alternative treatments, or because the treatments themselves are harmful (as in the case of apricot-pit therapy—which exposes the patient to cyanide—or in chiropractic, which can be dangerous to patients with cancer metastatic to the spinal bones or spinal cord. A macrobiotic diet is neither effective nor safe as it could hypothetically induce weight loss due to severe dietary restriction. There is limited evidence that acupuncture might relive pain in cancer patients, but data so far is insufficient to recommend its use outside of clinical trials.
There is free peer support and an online platform to interact with others going through various therapies, including Abraxane.
Chemotherapeutic options include:
- Cyclophosphamide plus methotrexate plus fluorouracil (CMF).
- Cyclophosphamide plus doxorubicin plus fluorouracil (CAF).
- Trastuzumab (monoclonal antibody therapy).
Hormonal options include:
- Orchiectomy.
- Gonadotropin hormone releasing hormone agonist (GNRH agonist) with or without total androgen blockage (anti-androgen).
- Tamoxifen for estrogen receptor–positive patients.
- Progesterone.
- Aromatase inhibitors.
In breast cancer survivors, it is recommended to first consider non-hormonal options for menopausal effects, such as bisphosphonates or selective estrogen receptor modulators (SERMs) for osteoporosis, and vaginal estrogen for local symptoms. Observational studies of systemic hormone replacement therapy after breast cancer are generally reassuring. If hormone replacement is necessary after breast cancer, estrogen-only therapy or estrogen therapy with an intrauterine device with progestogen may be safer options than combined systemic therapy.
Paget's disease of the breast is a type of cancer of the breast. Treatment usually involves a lumpectomy or mastectomy to surgically remove the tumour. Chemotherapy and/or radiotherapy may be necessary, but the specific treatment often depends on the characteristics of the underlying breast cancer.
Invasive cancer or extensive ductal carcinoma "in situ" is primarily treated with modified radical mastectomies. The procedure consists in the removal of the breast, the lining over the chest muscles and a part of the lymph nodes from under the arm. In cases of noninvasive cancers, simple mastectomies are performed in which only the breast with the lining over the chest muscles is removed.
Patients suffering from cancer that has not spread beyond the nipple and the surrounding area are often treated with breast-conserving surgery or lumpectomy. They usually undergo radiation therapy after the actual procedure to prevent recurrence. A breast-conserving surgery consists in the removal of the nipple, areola and the part of the breast that is affected by cancer.
In most cases, adjuvant treatment is part of the treatment schema. This type of treatment is normally given to patients with cancer to prevent a potential recurrence of the disease. Whether adjuvant therapy is needed depends upon the type of cancer and whether the cancer cells have spread to the lymph nodes. In Paget's disease, the most common type of adjuvant therapy is radiation following breast-conservative surgery.
Adjuvant therapy may also consist of anticancer drugs or hormone therapies. Hormonal therapy reduces the production of hormones within the body, or prevents the hormones from stimulating the cancer cells to grow, and it is commonly used in cases of invasive cancer by means of drugs such as tamoxifen and anastrozole.
In breast cancer survivors, non-hormonal birth control methods should be used as first-line options. Progestogen-based methods such as depot medroxyprogesterone acetate, IUD with progestogen or progestogen only pills have a poorly investigated but possible increased risk of cancer recurrence, but may be used if positive effects outweigh this possible risk.
Treatment largely follows patterns that have been set for the management of postmenopausal breast cancer. The initial treatment is surgical and consists of a modified radical mastectomy with axillary dissection or lumpectomy and radiation therapy with similar treatment results as in females. Also, mastectomy with sentinel lymph node biopsy is a treatment option. In males with node-negative tumors, adjuvant therapy is applied under the same considerations as in females with node-negative breast cancer. Similarly, with node-positive tumors, males increase survival using the same adjuvants as affected females, namely both chemotherapy plus tamoxifen and other hormonal therapy. There are no controlled studies in males comparing adjuvant options. In the vast majority of males with breast cancer hormone receptor studies are positive, and those situations are typically treated with hormonal therapy.
Locally recurrent disease is treated with surgical excision or radiation therapy combined with chemotherapy. Distant metastases are treated with hormonal therapy, chemotherapy, or a combination of both. Bones can be affected either by metastasis or weakened from hormonal therapy; bisphosphonates and calcitonin may be used to counterbalance this process and strengthen bones.
Most fibroadenomas are simply monitored. Some are treated by surgical excision. They are removed with a small margin of normal breast tissue if the preoperative clinical investigations are suggestive of the necessity of this procedure. A small amount of normal tissue must be removed in case the lesion turns out to be a phyllodes tumour on microscopic examination.
Because needle biopsy is often a reliable diagnostic investigation, some doctors may decide not to operate to remove the lesion, and instead opt for clinical follow-up to observe the lesion over time using clinical examination and mammography to determine the rate of growth, if any, of the lesion. A growth rate of less than sixteen percent per month in women under fifty years of age, and a growth rate of less than thirteen percent per month in women over fifty years of age have been published as safe growth rates for continued non-operative treatment and clinical observation.
Some fibroadenomas respond to treatment with ormeloxifene.
Fibroadenomas have not been shown to recur following complete excision or transform into phyllodes tumours following partial or incomplete excision.
Angiogenesis and EGFR (HER-1) inhibitors are frequently tested in experimental settings and have shown efficacy. Treatment modalities are not sufficiently established for normal use, and it is unclear in which stage they are best used and which patients would profit.
By 2009 A number of new strategies for TNBC were being tested in clinical trials, including the PARP inhibitor BSI 201, NK012.
A novel antibody-drug conjugate known as Glembatumumab vedotin (CDX-011), which targets the protein GPNMB, has also shown encouraging clinical trial results in 2009.
PARP inhibitors had shown some promise in early trials but failed in some later trials.
Nov 2013: An accelerated approval Phase II clinical trial (METRIC) investigating glembatumumab vedotin versus capecitabine has begun, expected to enroll 300 patients with GPNMB-expressing metastatic TNBC.
Three early stage trials reported TNBC results in June 2016, for IMMU-132, Vantictumab, and atezolizumab in combination with the chemotherapy nab-paclitaxel.
Standard treatment is surgery with adjuvant chemotherapy and radiotherapy. As a variation, neoadjuvant chemotherapy is very frequently used for triple-negative breast cancers. This allows for a higher rate of breast-conserving surgeries and by evaluating the response to the chemotherapy gives important clues about the individual responsiveness of the particular cancer to chemotherapy.
In addition to chemotherapy, an additive called Didox can be added to aid in the reduction of drug resistance and further treatment efforts. Didox is used to inhibit ribonucleotide reductase M2 (RRM2) which contributes to the cells resistance of the chemotherapy treatment resulting in a large number of relapse (Wilson 2016). RRM2 is upregulated within these specific Triple Negative cancer cells leading to a higher rate of drug resistance and inability to slow or stop the tumor progression which leads to more aggressive forms of triple negative breast cancer that are often fatal (Wilson 2016).
TNBCs are generally very susceptible to chemotherapy. In some cases, however, early complete response does not correlate with overall survival. This makes it particularly complicated to find the optimal chemotherapy. Adding a taxane to the chemotherapy appears to improve outcome substantially.
"BRCA1"-related triple-negative breast cancer appear to be particularly susceptible to chemotherapy including platinum-based agents and taxanes.
Although mutations in single genes were not individually predictive, TNBC tumors bearing mutations in genes involved in the androgen receptor (AR) and FOXA1 pathways were much more sensitive to chemotherapy. Mutations in the AR/FOXA1 pathway provide a novel marker for identifying chemosensitive TNBC patients who may benefit from current standard-of-care chemotherapy regimens. Mutations that lowered the levels of functional BRCA1 or BRCA2 RNA were associated with significantly better survival outcomes. This BRCA deficience signature define a new, highly chemosensitive subtype of TNBC. BRCA-deficient TNBC tumors have a higher rate of clonal mutation burden, defined as more clonal tumors with a higher number of mutations per clone, and are also associated with a higher level of immune activation, which may explain their greater chemosensitivity.
MASC is currently treated as a low-grade (i.e. Grade 1) carcinoma with an overall favorable prognosis. These cases are treated by complete surgical excision. However, the tumor does have the potential to recur locally and/or spread beyond surgically dissectible margins as well as metastasize to regional lymph nodes and distant tissues, particularly in tumors with histological features indicating a high cell growth rate potential. One study found lymph node metastasis in 5 of 34 MASC patients at initial surgery for the disease; these cases, when evidencing no further spread of disease, may be treated with radiation therapy. The treatment of cases with disease spreading beyond regional lymph nodes has been variable, ranging from simple excision to radical resections accompanied by adjuvant radiotherapy and/or chemotherapy, depending on the location of disease. Mean disease-free survival for MASC patients has been reported to be 92 months in one study.
The tyrosine kinase activity of NTRK3 as well as the ETV6-NTRK3 protein is inhibited by certain tyrosine kinase inhibitory drugs such as Entrectinib and LOXO-101; this offers a potential medical intervention method using these drugs to treat aggressive MASC disease. Indeed, one patient with extensive head and neck MASC disease obtained an 89% fall in tumor size when treated with entrectinib. This suppression lasted only 7 months due to the tumor's acquirement of a mutation in the "ETV6-NTRK3" gene. The newly mutated gene encoded an entrectinib-reisistant "ETV6-NTRK3" protein. Treatment of aggressive forms of MASC with NTRK3-inhibiting tyrosine kinase inhibiting drugs, perhaps with switching to another type of tyrosine kinase inhibitor drug if the tumor acquires resistance to the initial drug, is under study.STARTRK-2
Surgery has traditionally played a limited role in the treatment of IBC because it is considered essentially a systemic cancer. However, the role of surgical intervention is being reevaluated and is now considered to be an important part of the overall treatment process. The standard treatment for newly diagnosed inflammatory breast cancer is to receive systemic therapy prior to surgery. Achieving no disease in the surgical samples gives the best prognosis. Surgery is modified radical mastectomy. Lumpectomy, segmentectomy, or skin sparing mastectomy is not recommended. Immediate reconstruction is not recommended. Upfront surgery is contraindicated. After surgery, all cases are recommended for radiation therapy unless it is contraindicated.
Because the aggressive nature of the disease, it is highly recommended to be seen by IBC specialist by a multidisciplinary team.
Further, it is critical to seek novel targeted therapy in a clinical trial setting. Three modalities, surgery, chemotherapy, and radiation are under-utilized in the USA. Estrogen and Progesterone receptor positive cases have not shown to have a better prognosis. Pathological complete response to preoperative chemotherapy imparts a more favorable prognosis than a pathologically incomplete response. Loss of heterozygosity and extensive breast inflammation upon first clinical examination have a significantly worse prognosis. Premenopausal cases have significantly worse prognosis. In postmenopausal cases lean women have significantly better prognosis than obese women. Among patients with distant metastasis at diagnosis (stage IV disease), The overall survival (OS) is worse in patients with IBC than in those with non-IBC.
The initial approach to tubal cancer is generally surgical and similar to that of ovarian cancer. As the lesion will spread first to the adjacent uterus and ovary, a total abdominal hysterectomy is an essential part of this approach and removes the ovaries, the tubes, and the uterus with the cervix. Also, peritoneal washings are taken, the omentum is removed, and pelvic and paraaortic lymph nodes are sampled. Staging at the time of surgery and pathological findings will determine further steps. In advanced cases when the cancer has spread to other organs and cannot be completely removed cytoreductive surgery is used to lessen the tumor burden for subsequent treatments. Surgical treatments are typically followed by adjuvant usually platinum-based chemotherapy.
Also radiation therapy has been applied with some success to patients with tubal cancer for palliative or curative indications
These lesions rarely require surgery unless they are symptomatic or the diagnosis is in question. Since these lesions do not have malignant potential, long-term observation is unnecessary. Surgery can include the removal of the head of the pancreas (a pancreaticoduodenectomy), removal of the body and tail of the pancreas (a distal pancreatectomy), or rarely removal of the entire pancreas (a total pancreatectomy). In selected cases the surgery can be performed using minimally invasive techniques such as laparoscopy.
Thyroidectomy and neck dissection show good results in early stages of SCTC. However, due to highly aggressive phenotype, surgical treatment is not always possible. The SCTC is a radioiodine-refractory tumor. Radiotherapy might be effective in certain cases, resulting in relatively better survival rate and quality of life. Vincristine, Adriamycin, and bleomycin are used for adjuvant chemotherapy, but their effects are not good enough according to published series.
ADH, if found on a surgical (excisional) biopsy of a mammographic abnormality, does not require any further treatment, only mammographic follow-up.
If ADH is found on a core (needle) biopsy (a procedure which generally does not excise a suspicious mammographic abnormality), a surgical biopsy, i.e. a breast lumpectomy, to completely excise the abnormality and exclude breast cancer is the typical recommendation.
Identifying and treatment the underlying malignancy constitutes an uptime approach. Topical 5-fluorouracil may occasionally be help, as may oral retinoids, topical steroids, vitamin A acid, urea, salicylic acid, podophyllotoxin, and cryodestruction employing liquid.
Carcinoma "in situ" is, by definition, a localized phenomenon, with no potential for metastasis unless it progresses into cancer. Therefore, its removal eliminates the risk of subsequent progression into a life-threatening condition.
Some forms of CIS (e.g., colon polyps and polypoid tumours of the bladder) can be removed using an endoscope, without conventional surgical resection. Dysplasia of the uterine cervix is removed by excision (cutting it out) or by burning with a laser. Bowen's disease of the skin is removed by excision. Other forms require major surgery, the best known being intraductal carcinoma of the breast (also treated with radiotherapy). One of the most dangerous forms of CIS is the "pneumonic form" of BAC of the lung, which can require extensive surgical removal of large parts of the lung. When too large, it often cannot be completely removed, with eventual disease progression and death of the patient.
International Federation of Gynecology and Obstetrics (FIGO) staging is done at the time of surgery:
The treatment of choice for main-duct IPMNs is resection due to approximately 50% chance of malignancy. Side-branch IPMNs are occasionally monitored with regular CT or MRIs, but most are eventually resected, with a 30% rate of malignancy in these resected tumors. Survival 5 years after resection of an IPMN without malignancy is approximately 80%, 85% with malignancy but no lymph node spread and 0% with malignancy spreading to lymph nodes. Surgery can include the removal of the head of the pancreas (a pancreaticoduodenectomy), removal of the body and tail of the pancreas (a distal pancreatectomy), or rarely removal of the entire pancreas (a total pancreatectomy). In selected cases the surgery can be performed using minimally invasive techniques such as laparoscopy or robotic surgery. A study using Surveillance, Epidemiology, and End Result Registry (SEER) data suggested that increased lymph node counts harvested during the surgery were associated with better survival in invasive IPMN patients.
Most women with fibrocystic changes and no symptoms do not need treatment, but closer follow-up may be advised.
There is no widely accepted treatment or prevention strategy for fibrocystic condition. When treatment of symptoms is necessary it follows the same strategies as treatment for cyclical breast pain.
It is controversial whether benign breast conditions improve or worsen with oral contraceptives or hormone replacement therapy.
A few small-scale studies have indicated that the fibrocystic condition may be improved by dietary changes (especially by a reduced intake of caffeine and related methylxanthines or by a reduced intake of salt) and by vitamin supplements.
Small, preliminary studies have shown beneficial effects of iodine supplementation (such as reducing the presence of breast cysts, fibrous tissue plaques and breast pain) in women with fibrocystic breast changes, with elemental iodine (I) being more effective than iodide (I). It is noted that iodine supplementation, via an iodine-based modulation of estrogen influence in the breast, also appears to inhibit early cancer progression in small studies done on breast cancer cells in a lab.. Since treatment success in a lab is often not replicated in humans, more human research is necessary to determine if iodine supplementation prevents breast cancer
A U.S. National Institutes of Health fact sheet of 2011 reported on a randomized, double-blind, placebo-controlled clinical trial performed on 111 women affected by fibrosis and having a history of breast pain. In this trial, daily doses of iodine led to decreased in breast pain, tenderness and nodularity. It was emphasized that further research to clarify iodine's role in fibrocystic breast disease is needed and that large doses of iodine should only be used under the guidance of a physician.
Improvement usually parallels that of the cancer, whether surgical or chemotherapeutic. Generalization of the associated visceral malignancy may worsen the eruption.
For treatment purposes, MCACL has been traditionally considered a non-small cell lung carcinoma (NSCLC). Complete radical surgical resection is the treatment of choice.
There is virtually no data regarding new molecular targets or targeted therapy in the literature to date. Iwasaki and co-workers failed to find mutations of the epidermal growth factor receptor (EGFR) or the cellular Kirsten rat sarcoma virus oncogene "K-ras" in one reported case.