Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment of invasive carcinoma of no special type (NST) depends on the size of the mass (size of the tumor measured in its longest direction):
- <4 cm mass: surgery to remove the main tumor mass and to sample the lymph nodes in the axilla. The stage of the tumor is ascertained after this first surgery. Adjuvant therapy (i.e., treatment after surgery) may include a combination of chemotherapy, radiotherapy, hormonal therapy (e.g., tamoxifen) and/or targeted therapy (e.g., trastuzumab). More surgery is occasionally needed to complete the removal of the initial tumor or to remove recurrences.
- 4 cm or larger mass: modified (a less aggressive form of radical mastectomy) radical mastectomy (because any malignant mass in excess of 4 cm in size exceeds the criteria for a lumpectomy) along with sampling of the lymph nodes in the axilla.
The treatment options offered to an individual patient are determined by the form, stage and location of the cancer, and also by the age, history of prior disease and general health of the patient. Not all patients are treated the same way.
Treatment of metastatic breast cancer is currently an active area of research. Several medications are in development or in phase I/II trials. Typically new medications and treatments are first tested in metastatic cancer before trials in primary cancer are attempted.
Another area of research is finding combination treatments which provide higher efficacy with reduced toxicity and side effects.
Experimental medications:
- sorafenib a combined Tyrosine protein kinases inhibitor.
Some patients with metastatic breast cancer opt to try alternative therapies such as vitamin therapy, homeopathic treatments, a macrobiotic diet, chiropractic or acupuncture. There is no evidence that any of these therapies are effective; they may be harmful, either because patients pass up effective conventional therapies such as chemotherapy or anti-estrogen therapy in favor of alternative treatments, or because the treatments themselves are harmful (as in the case of apricot-pit therapy—which exposes the patient to cyanide—or in chiropractic, which can be dangerous to patients with cancer metastatic to the spinal bones or spinal cord. A macrobiotic diet is neither effective nor safe as it could hypothetically induce weight loss due to severe dietary restriction. There is limited evidence that acupuncture might relive pain in cancer patients, but data so far is insufficient to recommend its use outside of clinical trials.
There is free peer support and an online platform to interact with others going through various therapies, including Abraxane.
The primary method for treatment is surgical, not medical. Radiation and chemotherapy are not needed for benign lesions and are not effective for malignant lesions.
Benign granular cell tumors have a recurrence rate of 2% to 8% when resection margins are deemed clear of tumor infiltration. When the resection margins of a benign granular cell tumor are positive for tumor infiltration the recurrence rate is increased to 20%. Malignant lesions are aggressive and difficult to eradicate with surgery and have a recurrence rate of 32%.
a) Surgical resection is mainstay of treatment, whenever possible. If tumor is completely removed, post-operative radiation therapy is typically not needed since acinic cell is considered a low-grade histology. Post-operative radiation therapy for acinic cell carcinoma is used if: 1) margins are positive, 2) incomplete resection, 3) tumor invades beyond gland, 4) positive lymph nodes.
b) Neutron beam radiation
c) Conventional radiation
d) Chemotherapy
MASC is currently treated as a low-grade (i.e. Grade 1) carcinoma with an overall favorable prognosis. These cases are treated by complete surgical excision. However, the tumor does have the potential to recur locally and/or spread beyond surgically dissectible margins as well as metastasize to regional lymph nodes and distant tissues, particularly in tumors with histological features indicating a high cell growth rate potential. One study found lymph node metastasis in 5 of 34 MASC patients at initial surgery for the disease; these cases, when evidencing no further spread of disease, may be treated with radiation therapy. The treatment of cases with disease spreading beyond regional lymph nodes has been variable, ranging from simple excision to radical resections accompanied by adjuvant radiotherapy and/or chemotherapy, depending on the location of disease. Mean disease-free survival for MASC patients has been reported to be 92 months in one study.
The tyrosine kinase activity of NTRK3 as well as the ETV6-NTRK3 protein is inhibited by certain tyrosine kinase inhibitory drugs such as Entrectinib and LOXO-101; this offers a potential medical intervention method using these drugs to treat aggressive MASC disease. Indeed, one patient with extensive head and neck MASC disease obtained an 89% fall in tumor size when treated with entrectinib. This suppression lasted only 7 months due to the tumor's acquirement of a mutation in the "ETV6-NTRK3" gene. The newly mutated gene encoded an entrectinib-reisistant "ETV6-NTRK3" protein. Treatment of aggressive forms of MASC with NTRK3-inhibiting tyrosine kinase inhibiting drugs, perhaps with switching to another type of tyrosine kinase inhibitor drug if the tumor acquires resistance to the initial drug, is under study.STARTRK-2
While chemotherapy, radiation therapy, curettage and liquid nitrogen have been effective in some cases of ameloblastoma, surgical resection or enucleation remains the most definitive treatment for this condition. In a detailed study of 345 patients, chemotherapy and radiation therapy seemed to be contraindicated for the treatment of ameloblastomas. Thus, surgery is the most common treatment of this tumor. Because of the invasive nature of the growth, excision of normal tissue near the tumor margin is often required. Some have likened the disease to basal cell carcinoma (a skin cancer) in its tendency to spread to adjacent bony and sometimes soft tissues without metastasizing. While rarely not a cancer that actually invades adjacent tissues, ameloblastoma is suspected to spread to adjacent areas of the jaw bone via marrow space. Thus, wide surgical margins that are clear of disease are required for a good prognosis. This is very much like surgical treatment of cancer. Often, treatment requires excision of entire portions of the jaw.
Radiation is ineffective in many cases of ameloblastoma. There have also been reports of sarcoma being induced as the result of using radiation to treat ameloblastoma. Chemotherapy is also often ineffective. However, there is some controversy regarding this and some indication that some ameloblastomas might be more responsive to radiation that previously thought.
Since Krukenberg tumors are secondary (metastatic), management might logically be driven by identifying and treating the primary cancer. The optimal treatment of Krukenberg tumors is unclear. The role of surgical resection has not been adequately addressed but if metastasis is limited to the ovaries, surgery may improve survival. The role of chemotherapy and/or radiotherapy is uncertain but may sometimes be beneficial.
The Stehlin Foundation currently offers DSRCT patients the opportunity to send samples of their tumors free of charge for testing. Research scientists are growing the samples on nude mice and testing various chemical agents to find which are most effective against the individual's tumor.
Patients with advanced DSRCT may qualify to participate in clinical trials that are researching new drugs to treat the disease.
Germinomas, like several other types of germ cell tumor, are sensitive to both chemotherapy and radiotherapy. For this reason, treatment with these methods can offer excellent chances of longterm survival, even cure.
Although chemotherapy can shrink germinomas, it is not generally recommended alone unless there are contraindications to radiation. In a study in the early 1990s, carboplatinum, etoposide and bleomycin were given to 45 germinoma patients, and about half the patients relapsed. Most of these relapsed patients were then recovered with radiation or additional chemotherapy.
Symptomatic care should be given to all patients with brain metastases, as they often cause severe, debilitating symptoms. Treatment consists mainly of:
- Corticosteroids – Corticosteroid therapy is essential for all patients with brain metastases, as it prevents development of cerebral edema, as well as treating other neurological symptoms such as headaches, cognitive dysfunction, and emesis. Dexamethasone is the corticosteroid of choice. Although neurological symptoms may improve within 24 to 72 hours of starting corticosteroids, cerebral edema may not improve for up to a week. In addition, patients may experience adverse side effects from these drugs, such as myopathy and opportunistic infections, which can be alleviated by decreasing the dose.
- Anticonvulsants – Anticonvulsants should be used for patients with brain metastases who experience seizures, as there is a risk of status epilepticus and death. Newer generation anticonvulsants including Lamotrigine and Topiramate are recommended due to their relatively limited side effects. It is not recommended to prophylactically give anti-seizure medications when a seizure has not yet been experienced by a patient with brain metastasis.
Treatment for brain metastases is primarily palliative, with the goals of therapy being reduction of symptoms and prolongation of life. However, in some patients, particularly younger, healthier patients, aggressive therapy consisting of open craniotomy with maximal excision, chemotherapy, and radiosurgical intervention (Gamma Knife therapy) may be attempted.
Treatment and survival is determined, to a great extent, by whether or not a cancer remains localized or spreads to other locations in the body. If the cancer metastasizes to other tissues or organs it usually dramatically increases a patient's likelihood of death. Some cancers—such as some forms of leukemia, a cancer of the blood, or malignancies in the brain—can kill without spreading at all.
Once a cancer has metastasized it may still be treated with radiosurgery, chemotherapy, radiation therapy, biological therapy, hormone therapy, surgery, or a combination of these interventions ("multimodal therapy"). The choice of treatment depends on a large number of factors, including the type of primary cancer, the size and location of the metastases, the patient's age and general health, and the types of treatments used previously. In patients diagnosed with CUP it is often still possible to treat the disease even when the primary tumor cannot be located.
Current treatments are rarely able to cure metastatic cancer though some tumors, such as testicular cancer and thyroid cancer, are usually curable.
Palliative care, care aimed at improving the quality of life of people with major illness, has been recommended as part of management programs for metastasis.
Chemotherapeutic options include:
- Cyclophosphamide plus methotrexate plus fluorouracil (CMF).
- Cyclophosphamide plus doxorubicin plus fluorouracil (CAF).
- Trastuzumab (monoclonal antibody therapy).
Hormonal options include:
- Orchiectomy.
- Gonadotropin hormone releasing hormone agonist (GNRH agonist) with or without total androgen blockage (anti-androgen).
- Tamoxifen for estrogen receptor–positive patients.
- Progesterone.
- Aromatase inhibitors.
A non-minimally invasive Hürthle cell carcinoma is typically treated by a total thyroidectomy followed by radioactive iodine therapy. A Hürthle cell adenoma or a minimally invasive tumor can be treated by a thyroid lobectomy, although some surgeons will perform a total thyroidectomy to prevent the tumor from reappearing and metastasizing.
A modified radical neck dissection may be performed for clinically positive lymph nodes.
Uterine fibroids can be treated with the same methods like sporadic uterine fibroids including antihormonal treatment, surgery or embolisation. Substantially elevated risk of progression to or independent development of uterine leiomyosarcoma has been reported which may influence treatment methods.
The predisposition to renal cell cancer calls for screening and, if necessary, urological management.
The skin lesions may be difficult to treat as they tend to recur after excision or destructive treatment. Drugs which affect smooth muscle contraction, such as doxazosin, nitroglycerine, nifedipine and phenoxybenzamine, may provide pain relief.
Topical lidocaine patches have been reported to decrease in severity and frequency of pain cutaneous leiomyomas.
In breast cancer survivors, it is recommended to first consider non-hormonal options for menopausal effects, such as bisphosphonates or selective estrogen receptor modulators (SERMs) for osteoporosis, and vaginal estrogen for local symptoms. Observational studies of systemic hormone replacement therapy after breast cancer are generally reassuring. If hormone replacement is necessary after breast cancer, estrogen-only therapy or estrogen therapy with an intrauterine device with progestogen may be safer options than combined systemic therapy.
Angiogenesis and EGFR (HER-1) inhibitors are frequently tested in experimental settings and have shown efficacy. Treatment modalities are not sufficiently established for normal use, and it is unclear in which stage they are best used and which patients would profit.
By 2009 A number of new strategies for TNBC were being tested in clinical trials, including the PARP inhibitor BSI 201, NK012.
A novel antibody-drug conjugate known as Glembatumumab vedotin (CDX-011), which targets the protein GPNMB, has also shown encouraging clinical trial results in 2009.
PARP inhibitors had shown some promise in early trials but failed in some later trials.
Nov 2013: An accelerated approval Phase II clinical trial (METRIC) investigating glembatumumab vedotin versus capecitabine has begun, expected to enroll 300 patients with GPNMB-expressing metastatic TNBC.
Three early stage trials reported TNBC results in June 2016, for IMMU-132, Vantictumab, and atezolizumab in combination with the chemotherapy nab-paclitaxel.
There are three main treatments for Hürthle cell adenomas. Once the adenoma is detected most often the nodules removed to prevent the cells from later metastisizing. A total thyroidectomy is often performed, this results in a complete removal of the thyroid. Some patients may only have half of their thyroid removed, this is known as a thyroid lobectomy. Another treatment option includes pharmacological suppression of thyroid hormone. The thyroid gland is responsible for producing the thyroid hormones triiodothyronine (T3) and thyroxine (T4). Patients with suppressed thyroid function often require oral thyroid replacement (e.g. levothyroxine) in order to maintain normal thyroid hormone levels. The final treatment option is RAI abaltion (radioactive iodine ablation). This treatment option is used to destroy infected thyroid cells after total thyroidectomy. This treatment does not change prognosis of disease, but will diminish the recurrence rate. Also, Hürthle cells do not respond well to RAI. However, often doctors suggest this treatment to patients with Hürthle cell adenoma and Hürthle cell carcinoma because some Hürthle cells will respond and it will kill remaining tissue.
In breast cancer survivors, non-hormonal birth control methods should be used as first-line options. Progestogen-based methods such as depot medroxyprogesterone acetate, IUD with progestogen or progestogen only pills have a poorly investigated but possible increased risk of cancer recurrence, but may be used if positive effects outweigh this possible risk.
CUP is a term that refers to many different cancers. For that reason, treatment depends on where the cancer is found, the microscopic appearance of the cancer cells, the biochemical characterization of the cells, and the patient’s age and overall physical condition. In women, who present with axillary lymph node involvement, treatment is offered along the lines of breast cancer. In patients, who have neck lymph node involvement, then treatment is offered along the lines of head and neck cancer. If inguinal lymph nodes are involved, then treatment may be offered along the lines of genitourinary cancer.
If the site of origin is unknown or undiscovered, then the histology of the tumor (e.g., adenocarcinoma, squamous cell or mesenchymal) can usually be identified, and a probable origin may be assumed. When this is possible, then treatment is based on the type of cell and probable origin. Based on histological subtype, combination chemotherapy may be selected. A combination of carboplatin and paclitaxel is often used. Advances techniques such as FISH and tissue of origin testing may also be employed. Germ cell tumors often carry abnormality of chromosome 12, which if identified, directs treatment for metastatic germ cell tumors.
No method is standard for all forms of CUP, but chemotherapy, radiation therapy, hormone therapy, and surgery may be used alone or in combination to treat patients who have CUP. Even when the cancer is unlikely to be cured, treatment may help the patient live longer or improve the patient’s quality of life. Radiation may be used to shrink a variety of local tumors. However, the potential side effects of the treatment must be considered along with the potential benefits.
In CUP to secondary neck nodes, surgery followed by external beam radiotherapy is sufficient.
For CUP with an unfavorable prognosis, treatment with taxanes may provide a slight survival benefit. The uncertainties and ambiguity inherent in a CUP diagnosis may cause additional stress for the patient.
Standard treatment is surgery with adjuvant chemotherapy and radiotherapy. As a variation, neoadjuvant chemotherapy is very frequently used for triple-negative breast cancers. This allows for a higher rate of breast-conserving surgeries and by evaluating the response to the chemotherapy gives important clues about the individual responsiveness of the particular cancer to chemotherapy.
In addition to chemotherapy, an additive called Didox can be added to aid in the reduction of drug resistance and further treatment efforts. Didox is used to inhibit ribonucleotide reductase M2 (RRM2) which contributes to the cells resistance of the chemotherapy treatment resulting in a large number of relapse (Wilson 2016). RRM2 is upregulated within these specific Triple Negative cancer cells leading to a higher rate of drug resistance and inability to slow or stop the tumor progression which leads to more aggressive forms of triple negative breast cancer that are often fatal (Wilson 2016).
TNBCs are generally very susceptible to chemotherapy. In some cases, however, early complete response does not correlate with overall survival. This makes it particularly complicated to find the optimal chemotherapy. Adding a taxane to the chemotherapy appears to improve outcome substantially.
"BRCA1"-related triple-negative breast cancer appear to be particularly susceptible to chemotherapy including platinum-based agents and taxanes.
Although mutations in single genes were not individually predictive, TNBC tumors bearing mutations in genes involved in the androgen receptor (AR) and FOXA1 pathways were much more sensitive to chemotherapy. Mutations in the AR/FOXA1 pathway provide a novel marker for identifying chemosensitive TNBC patients who may benefit from current standard-of-care chemotherapy regimens. Mutations that lowered the levels of functional BRCA1 or BRCA2 RNA were associated with significantly better survival outcomes. This BRCA deficience signature define a new, highly chemosensitive subtype of TNBC. BRCA-deficient TNBC tumors have a higher rate of clonal mutation burden, defined as more clonal tumors with a higher number of mutations per clone, and are also associated with a higher level of immune activation, which may explain their greater chemosensitivity.
The prognosis for DSRCT remains poor. Prognosis depends upon the stage of the cancer. Because the disease can be misdiagnosed or remain undetected, tumors frequently grow large within the abdomen and metastasize or seed to other parts of the body.
There is no known organ or area of origin. DSRCT can metastasize through lymph nodes or the blood stream. Sites of metastasis include the spleen, diaphragm, liver, large and small intestine, lungs, central nervous system, bones, uterus, bladder, genitals, abdominal cavity, and the brain.
A multi-modality approach of high-dose chemotherapy, aggressive surgical resection, radiation, and stem cell rescue improves survival for some patients. Reports have indicated that patients will initially respond to first line chemotherapy and treatment but that relapse is common.
Some patients in remission or with inoperable tumor seem to benefit from long term low dose chemotherapy, turning DSRCT into a chronic disease.
Treatment largely follows patterns that have been set for the management of postmenopausal breast cancer. The initial treatment is surgical and consists of a modified radical mastectomy with axillary dissection or lumpectomy and radiation therapy with similar treatment results as in females. Also, mastectomy with sentinel lymph node biopsy is a treatment option. In males with node-negative tumors, adjuvant therapy is applied under the same considerations as in females with node-negative breast cancer. Similarly, with node-positive tumors, males increase survival using the same adjuvants as affected females, namely both chemotherapy plus tamoxifen and other hormonal therapy. There are no controlled studies in males comparing adjuvant options. In the vast majority of males with breast cancer hormone receptor studies are positive, and those situations are typically treated with hormonal therapy.
Locally recurrent disease is treated with surgical excision or radiation therapy combined with chemotherapy. Distant metastases are treated with hormonal therapy, chemotherapy, or a combination of both. Bones can be affected either by metastasis or weakened from hormonal therapy; bisphosphonates and calcitonin may be used to counterbalance this process and strengthen bones.
Ocular oncology is the branch of medicine dealing with tumors relating to the eye and its adnexa.
Ocular oncology takes into consideration that the primary requirement for patients is preservation of life by removal of the tumor, along with best efforts directed at preservation of useful vision, followed by cosmetic appearance. The treatment of ocular tumors is generally a multi-specialty effort, requiring coordination between the ophthalmologist, medical oncologist, radiation specialist, head & neck surgeon/ENT surgeon, pediatrician/internal medicine/hospitalist and a multidisciplinary team of support staff and nurses.