Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Acrodermatitis enteropathica without treatment is fatal, and affected individuals may die within a few years. There is no cure for the condition. Treatment includes lifelong dietary zinc supplementation.
There is no broadly accepted standard of care for infants with DG. Some healthcare providers recommend partial to complete dietary restriction of milk and other high galactose foods for infants or young children with DG; others do not. Because children with DG develop increased tolerance for dietary galactose as they grow, few healthcare providers recommend dietary restriction of lactose or galactose beyond early childhood.
The rationale for NOT restricting dietary galactose exposure of infants and/or young children with DG: Healthcare providers who do not recommend dietary restriction of galactose for infants with DG generally consider DG to be of no clinical significance—meaning most infants and children with DG seem to be doing clinically well. Further, these providers may be opposed to interrupting or reducing breastfeeding when there is no clear evidence it is contraindicated. These providers may argue that the recognized health benefits of breastfeeding outweigh the potential risks of as yet unknown negative effects of continued milk exposure for these infants. For infants with DG who continue to drink milk, some doctors would recommend that blood galactose-1-phosphate (Gal-1P) or urinary galactitol be rechecked by age 12 months to ensure that these metabolite levels are normalizing.
The rationale FOR restricting dietary galactose exposure of infants and/or young children with DG: Healthcare providers who recommend partial or complete dietary restriction of galactose for infants and/or young children with DG generally cite concern about the unknown long-term consequences of abnormally elevated galactose metabolites in a young child's blood and tissues. Infants with DG who continue to drink milk accumulate the same set of abnormal galactose metabolites seen in babies with classic galactosemia – e.g. galactose, Gal-1P, galactonate, and galactitol – but to a lesser extent. While it remains unclear whether any of these metabolites contribute to the long-term developmental complications experienced by so many older children with classic galactosemia, the possibility that they might cause problems serves to motivate some healthcare providers to recommend dietary galactose restriction for infants with DG. Switching an infant with DG from milk or milk formula (high galactose) to soy formula (low galactose) rapidly normalizes their galactose metabolites. This approach is considered potentially preventative rather than responsive to acute symptoms.
If dietary galactose restriction of any kind is followed, healthcare providers may recommend that the child have a galactose challenge to re-evaluate galactose tolerance before the restrictive diet is discontinued. Most infants or young children with DG who are followed by a metabolic specialist are discharged from follow up after a successful galactose challenge.Options for those choosing to restrict dietary galactose in infancy and/or early childhood: Dietary restriction practices for Duarte galactosemia vary widely. In the US, some healthcare providers recommend full dietary restriction of milk and all dairy products for the first 12 months of life, followed by a galactose challenge. Some providers recommend the galactose challenge before 12 months, others after. Some providers who recommend dietary intervention suggest a "compromise approach" if the parent wishes to breastfeed, such that the parent alternates feedings of breast milk and low galactose formula. Finally, some parents choose to continue some form of dietary galactose restriction for their child with DG beyond early childhood.
What is a galactose challenge? The goal of a galactose challenge is to learn whether a child is able to metabolize dietary galactose sufficiently to prevent the abnormal accumulation of galactose metabolites, generally measured as Gal-1P in the blood. For infants with DG who showed elevated galactose metabolites at diagnosis, this test can be used to see if their ability to process galactose has improved enough to discontinue dietary galactose restriction.
To test galactose metabolism, a baseline Gal-1P level is measured while the child is on a galactose-restricted diet. If the level is within the normal range (e.g. <1.0 mg/dL), the parent/guardian is advised to "challenge" the child with dietary galactose—meaning feed the child a diet that includes normal levels of milk for 2–4 weeks. Immediately after that time, another blood sample is collected and analyzed for Gal-1P level. If this second result is still in the normal range, the child is said to have "passed" their galactose challenge, and dietary galactose restrictions are typically relaxed or discontinued. If the second test shows elevated Gal-1P levels, the parent/guardian may be advised to resume galactose restriction for the child, and the "challenge" may be repeated after a few months.
One 10-year-old girl with Crigler–Najjar syndrome type I was successfully treated by liver cell transplantation.
The homozygous Gunn rat, which lacks the enzyme uridine diphosphate glucuronyltransferase (UDPGT), is an animal model for the study of Crigler–Najjar syndrome. Since only one enzyme is working improperly, gene therapy for Crigler-Najjar is a theoretical option which is being investigated.
The only treatment for classic galactosemia is eliminating lactose and galactose from the diet. Even with an early diagnosis and a restricted diet, however, some individuals with galactosemia experience long-term complications such as speech difficulties, learning disabilities, neurological impairment (e.g. tremors, etc.), and ovarian failure. Symptoms have not been associated with Duarte galactosemia, and many individuals with Duarte galactosemia do not need to restrict their diet at all. However, research corroborates a previously overlooked theory that Duarte galactosemia may lead to language developmental issues in children with no clinical symptoms. Infants with classic galactosemia cannot be breast-fed due to lactose in human breast milk and are usually fed a soy-based formula.
Galactosemia is sometimes confused with lactose intolerance, but galactosemia is a more serious condition. Lactose intolerant individuals have an acquired or inherited shortage of the enzyme lactase, and experience abdominal pains after ingesting dairy products, but no long-term effects. In contrast, a galactosemic individual who consumes galactose can cause permanent damage to their bodies.
Long term complication of galactosemia includes:
- Speech deficits
- Ataxia
- Dysmetria
- Diminished bone density
- Premature ovarian failure
- Cataract
Treatment consists of vitamin K supplementation. This is often given prophylactically to newborns shortly after birth.
There is no cure for GALT deficiency, in the most severely affected patients, treatment involves a galactose free diet for life. Early identification and implementation of a modified diet greatly improves the outcome for patients. The extent of residual GALT enzyme activity determines the degree of dietary restriction. Patients with higher levels of residual enzyme activity can typically tolerate higher levels of galactose in their diets. As patients get older, dietary restriction is often relaxed. With the increased identification of patients and their improving outcomes, the management of patients with galactosemia in adulthood is still being understood.
After diagnosis, patients are often supplemented with calcium and vitamin D3. Long-term manifestations of the disease including ovarian failure in females, ataxia. and growth delays are not fully understood. Routine monitoring of patients with GALT deficiency includes determining metabolite levels (galactose 1-phosphate in red blood cells and galactitol in urine) to measure the effectiveness of and adherence to dietary therapy, ophthalmologic examination for the detection of cataracts and assessment of speech, with the possibility of speech therapy if developmental verbal dyspraxia is evident.
Treatment is predominantly preventive. Avoidance of topical phenols and diets low in tyrosine may help. Replacement and repair of damaged tissue is also possible.
Over the counter medications are those medications that do not require a prescription to purchase in the US. Medications that require a prescription to purchase in the US may be available in other countries without a prescription. The following guidelines are recommended:
- taking oral medications after breastfeeding rather than before will allow some of the medication to leave the mother's body through her kidneys between nursings.
- in most women without kidney disease, nonsteroidal anti-inflammatory drugs and paracetamol (acetaminophen) are used safely.
- aspirin can cause rashes and even cause bleeding in infants.
- limit the use of antihistamines for long periods of time. These anti-allergy medications can cause crying, sleep problems, fussiness, exsessive sleepiness in babies. Antihistamines have an effect on the amount of milk the body produces and decrease the supply.
- carefully observe the infant for changes or side effects when first taking a medication to watch for side effects. Side effects indicating that the medication is having an affect on the baby is difficulty breathing, rash and other questionable changes that occurred after the medication was started by the mother.
- many times other young children are in the home and keeping these over the counter medications out of their reach is a safe practice.
Other substances or chemicals have been evaluated regarding their safe use during pregnancy. Hair dye or solutions used for a 'permanent' do not pass to breastmilk. No adverse reports of using oral antihastamines and breastfeeding are found. Some of the older antihistamines used by a nursing mother can cause drowsiness in the infant. This may be a concern if the infant misses feedings by sleeping instead of nursing.
Lucey–Driscoll syndrome is an autosomal recessive metabolic disorder affecting enzymes involved in bilirubin metabolism. It is one of several disorders classified as a transient familial neonatal unconjugated hyperbilirubinemia.
A defect in the UGT1A1-gene, also linked to Crigler–Najjar syndrome and Gilbert's syndrome, is responsible for the congenital form of Lucey–Driscoll syndrome.
Tamoxifen, a selective estrogen receptor modulator (SERM) with antiestrogenic actions in breast tissue and estrogenic actions in bone, has been found to be highly effective in preventing and reversing bicalutamide-induced gynecomastia in men. Moreover, in contrast to analogues (which also alleviate bicalutamide-induced gynecomastia), tamoxifen poses minimal risk of accelerated bone loss and osteoporosis. For reasons that are unclear, anastrozole, an aromatase inhibitor (or an inhibitor of estrogen biosynthesis), has been found to be much less effective in comparison to tamoxifen for treating bicalutamide-induced gynecomastia. A systematic review of -induced gynecomastia and breast tenderness concluded that tamoxifen (10–20 mg/day) and radiotherapy could effectively manage the side effect without relevant adverse effects, though with tamoxifen showing superior effectiveness. Surgical breast reduction may also be employed to correct bicalutamide-induced gynecomastia.
Treatment of HFI depends on the stage of the disease, and the severity of the symptoms. Stable patients without acute intoxication events are treated by careful dietary planning that avoids fructose and its metabolic precursors. Fructose is replaced in the diet by glucose, maltose or other sugars. Management of patients with HFI often involves dietitians who have a thorough knowledge of what foods are acceptable.
The most common side effects of bicalutamide monotherapy in men are breast pain/tenderness and gynecomastia. These side effects may occur in as many as 90% of men treated with bicalutamide monotherapy, but gynecomastia is generally reported to occur in 70 to 80% of patients. In the trial, at a median follow-up of 7.4 years, breast pain and gynecomastia respectively occurred in 73.6% and 68.8% of men treated with 150 mg/day bicalutamide monotherapy. In more than 90% of affected men, bicalutamide-related breast events are mild-to-moderate in severity. It is only rarely and in severe and extreme cases of gynecomastia that the proportions of the male breasts become so marked that they are comparable to those of women. In the trial, 16.8% of bicalutamide patients relative to 0.7% of controls withdrew from the study due to breast pain and/or gynecomastia. The incidence and severity of gynecomastia are higher with estrogens (e.g., diethylstilbestrol) than with like bicalutamide in the treatment of men with prostate cancer.
Simple cholecystectomy is suitable for type I patients. For types II–IV, subtotal cholecystectomy can be performed to avoid damage to the main bile ducts. Cholecystectomy and bilioenteric anastomosis may be required. Roux-en-Y hepaticojejunostomy has shown good outcome in some studies.
Crigler–Najjar syndrome or CNS is a rare inherited disorder affecting the metabolism of bilirubin, a chemical formed from the breakdown of the heme in red blood cells. The disorder results in a form of nonhemolytic jaundice, which results in high levels of unconjugated bilirubin and often leads to brain damage in infants. The disorder is inherited in an autosomal recessive manner.
This syndrome is divided into types I and II, with the latter sometimes called Arias syndrome. These two types, along with Gilbert's syndrome, Dubin–Johnson syndrome, and Rotor syndrome, make up the five known hereditary defects in bilirubin metabolism. Unlike Gilbert's syndrome, only a few cases of CNS are known.
Treatment consists primarily of supportive care including providing bowel rest by stopping enteral feeds, gastric decompression with intermittent suction, fluid repletion to correct electrolyte abnormalities and third-space losses, support for blood pressure, parenteral nutrition, and prompt antibiotic therapy. Monitoring is clinical, although serial supine and left lateral decubitus abdominal x-rays should be performed every six hours. Where the disease is not halted through medical treatment alone, or when the bowel perforates, immediate emergency surgery to resect the dead bowel is generally required, although abdominal drains may be placed in very unstable infants as a temporizing measure. Surgery may require a colostomy, which may be able to be reversed at a later time. Some children may suffer from short bowel syndrome if extensive portions of the bowel had to be removed.
Very little is known about outcomes in DG after early childhood. This is because many infants with DG are born in states where they are not diagnosed by NBS, and of those who are diagnosed, most are discharged from metabolic follow-up as toddlers.
Because it is unclear whether DG has any long-term developmental impacts, or if diet modification would prevent or resolve any issues that may result from DG, any developmental or psychosocial problems experienced by a person with DG should be treated symptomatically and the possibility of other causes should be explored.
Of note, premature ovarian insufficiency, a common outcome among girls and women with classic galactosemia, has been checked by hormone studies and does not appear to occur at high prevalence among girls with DG.
Prior Research Concerning Developmental Outcomes of Children with DG: Three
studies of developmental outcomes of children with DG have been published.
- The first looked at biochemical markers and developmental outcomes in a group of 28 toddlers and young children with DG, some of whom had drunk milk through infancy and some of whom had drunk soy formula. The authors found that galactose metabolites were significantly elevated in the infants drinking milk over those drinking soy. However, all of the children scored within normal limits on standardized tests of child development.
- A second study of developmental outcomes in DG looked at 3 to 10 year olds living in a large metropolitan area and asked whether children diagnosed as newborns with DG in this group were more likely than their unaffected peers to receive special educational services later in childhood. The answer was yes. Specifically, children with DG in this group were significantly more likely than other children to receive a diagnosis of, or special educational services for, a speech/language disorder.
- The final study reported that addressed developmental outcomes in DG was a pilot study involving direct assessments of 15 children, all ages 6–11 years old; 15 had DG and 5 did not. Children in the DG group showed slower auditory processing than did the control group. The DG group also showed some slight differences in auditory memory, receptive language/ listening skills, social-emotional functioning, and balance and fine motor coordination.
Combined,
these studies "suggest" that school age
children with DG "might" be at
increased risk for specific developmental difficulties compared with controls. All
of the relevant studies were limited, however, leaving the question of whether
children with DG are truly at increased risk for developmental difficulties
unresolved. Current reports also leave open the question of whether dietary
exposure to milk in infancy associates with developmental outcomes in DG. More
research is needed to answer these questions.
Homeopathy, acupuncture, and traditional Chinese medicine should not be used.
Galactose is converted into glucose by the action of three enzymes, known as the Leloir pathway. There are diseases associated with deficiencies of each of these three enzymes:
Treatment protocol is not well established. Some sources report that approximately half of the patients will fully recover after lengthy (mean time 14.5 months, range 2–24 months) expectant management.
Treatment with steroids is lengthy and usually requires about 6 months. While some source report very good success with steroids most report a considerable risk of recurrence after a treatment with steroids alone. Steroids are known to cause elevation of prolactin levels and increase risk of several conditions such as diabetes, and other endocrinopathies which in turn increase the risk of IGM. Treatment with topical steroids to limit side effects was also reported in one case. For surgical treatment recurrence rates of 5-50% have been reported.
A 1997 literature review article recommended complete resection or corticosteroid therapy, stating also that long-term follow-up was indicated due to a high rate of recurrence.
Treatment with a combination of glucocorticoids and prolactin lowering medications such as bromocriptine or cabergoline was used with good success in Germany. Prolactin lowering medication has also been reported to reduce the risk of recurrence. In cases of drug-induced hyperprolactinemia (such as antipsychotics) prolactin-sparing medication can be tried.
Methotrexate alone or in combination with steroids has been used with good success. Its principal mechanism of action is immunomodulating activity, with a side effect profile that is more favorable for treating IGM.
Colchicine, azathioprine and NSAIDs have also been used.
Galactosemic infants present clinical symptoms just days after the onset of a galactose diet. They include difficulty feeding, diarrhea, lethargy, hypotonia, jaundice, cataract, and hepatomegaly (enlarged liver). If not treated immediately, and many times even with treatment, severe mental retardation, verbal dyspraxia (difficulty), motor abnormalities, and reproductive complications may ensue. The most effective treatment for many of the initial symptoms is complete removal of galactose from the diet. Breast milk and cow's milk should be replaced with soy alternatives. Infant formula based on casein hydrolysates and dextrin maltose as a carbohydrate source can also be used for initial management, but are still high in galactose. The reason for long-term complications despite a discontinuation of the galactose diet is vaguely understood. However, it has been suggested that endogenous (internal) production of galactose may be the cause.
The treatment for galactosemic cataract is no different from general galactosemia treatment. In fact, galactosemic cataract is one of the few symptoms that is actually reversible. Infants should be immediately removed from a galactose diet when symptoms present, and the cataract should disappear and visibility should return to normal. Aldose reductase inhibitors, such as sorbinil, have also proven promising in preventing and reversing galactosemic cataracts. AR inhibitors hinder aldose reductase from synthesizing galactitol in the lens, and thus restricts the osmotic swelling of the lens fibers. Other AR inhibitors include the acetic acid compounds zopolrestat, tolrestat, alrestatin, and epalrestat. Many of these compounds have not been successful in clinical trials due to adverse pharmokinetic properties, inadequate efficacy and efficiency, and toxic side effects. Testing on such drug-treatments continues in order to determine potential long-term complications, and for a more detailed mechanism of how AR inhibitors prevent and reverse the galactosemic cataract.
Once a child is born prematurely, thought must be given to decreasing the risk for developing NEC. Toward that aim, the methods of providing hyperalimentation and oral feeds are both important. In a 2012 policy statement, the American Academy of Pediatrics recommended feeding preterm infants human milk, finding "significant short- and long-term beneficial effects," including reducing the rate of NEC by a factor of two or more.
A study by researchers in Peoria, IL, published in "Pediatrics" in 2008, demonstrated that using a higher rate of lipid (fats and/or oils) infusion for very low birth weight infants in the first week of life resulted in zero infants developing NEC in the experimental group, compared with 14% with NEC in the control group. (They started the experimental group at 2 g/kg/d of 20% IVFE and increased within two days to 3 g/kg/d; amino acids were started at 3 g/kg/d and increased to 3.5.)
Neonatologists at the University of Iowa reported on the importance of providing small amounts of trophic oral feeds of human milk starting as soon as possible, while the infant is being primarily fed intravenously, in order to prime the immature gut to mature and become ready to receive greater oral intake. Human milk from a milk bank or donor can be used if mother's milk is unavailable. The gut mucosal cells do not get enough nourishment from arterial blood supply to stay healthy, especially in very premature infants, where the blood supply is limited due to immature development of the capillaries, so nutrients from the lumen of the gut are needed.
A Cochrane review published in April 2014 has established that supplementation of probiotics enterally "prevents severe NEC as well as all-cause mortality in preterm infants."
Increasing amounts of milk by 30 to 40 ml/kg is safe in infant who are born weighing very little. Not beginning feeding an infant by mouth for more than 4 days does not appear to have protective benefits.
Data from the NICHD Neonatal Research Network's Glutamine Trial showed that the incidence of NEC among extremely low birthweight (ELBW, <1000 g) infants fed with more than 98% human milk from their mothers was 1.3%, compared with 11.1% among infants fed only preterm formula, and 8.2% among infants fed a mixed diet, suggesting that infant deaths could be reduced by efforts to support production of milk by mothers of ELBW newborns.
Research from the University of California, San Diego found that higher levels of one specific human milk oligosaccharide, disialyllacto-N-tetraose, may be protective against the development of NEC.
No clear beneficial effect from spinal manipulation or massage has been shown. Further, as there is no evidence of safety for cervical manipulation for baby colic, it is not advised. There is a case of a three-month-old dying following manipulation of the neck area.
No evidence supports the efficacy of so-called "gripe water", and its use poses risks, especially in formulations that include alcohol or sugar. Evidence does not support lactase, or supplementing formula with probiotics. The use of the probiotic "Lactobacillus reuteri" in babies who are breastfed has tentative evidence.
The appearance of tuberous breasts can potentially be changed through surgical procedures, including the tissue expansion method and breast implants.
The procedure to change the appearance of tuberous breasts can be more complicated than a regular breast augmentation, and some plastic surgeons have specialist training in tuberous breast correction. As tuberous breasts are a congenital deformity, referral for treatment under the National Health Service may be possible in the United Kingdom. A starting point for those seeking such a referral may be a visit to their local General Practitioner. For those seeking non-surgical solutions, counseling may be recommended as a way of coming to terms with body image.
Treatment of atrophic rhinitis can be either medical or surgical.
Medical measures include:
- Nasal irrigation using normal saline
- Nasal irrigation and removal of crusts using alkaline nasal solutions prepared by dissolving a spoonful of powder containing one part sodium bicarbonate, one part sodium biborate and two part sodium chloride.
- 25% glucose in glycerine can be applied to the nasal mucosa to inhibit the growth of proteolytic organisms which produce foul smell.
- Local antibiotics, such as chloromycetine.
- Vitamin D (Kemicetine).
- Estradiol spray for regeneration of seromucinous glands and vascularization of mucosa.
- Systemic streptomycin (1g/day) against Klebsiella organisms.
- Oral potassium iodide for liquefaction of secretion.
- Placental extract injected in the submucosa.
Surgical interventions include:
- Young's operation.
- Modified Young's operation.
- Narrowing of nasal cavities, submucosal injection of Teflon paste, section and medial displacement of the lateral wall of the nose.
- Transposition of parotid duct to maxillary sinus or nasal mucosa.