Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Initial measures can include rest, caffeine intake (via coffee or intravenous infusion), and hydration. Corticosteroids may provide transient relief for some patients. An abdominal binder — a type of garment that increases intracranial pressure by compressing the abdomen — can temporarily relieve symptoms for some people.
The treatment of choice for this condition is the surgical application of epidural blood patches, which has a higher success rate than conservative treatments of bed rest and hydration. Through the injection of a person's own blood into the area of the hole in the dura, an epidural blood patch uses blood's clotting factors to clot the sites of holes. The volume of autologous blood and number of patch attempts for patients is highly variable. One-quarter to one-third of SCSFLS patients do not have relief of symptoms from epidural blood patching.
The treatment of PRES dependent on its cause. Anti-epileptic medication may also be appropriate.
Most arachnoid cysts are asymptomatic and do not require treatment. Treatment may be necessary when symptomatic. A variety of procedures may be used to decompress (remove pressure from) the cyst.
- Surgical placement of a cerebral shunt:
- An internal shunt drains into the subdural compartment.
- A cystoperitoneal shunt drains to the peritoneal cavity.
- Craniotomy with excision
- Various endoscopic techniques are proving effective, including laser-assisted techniques.
- Drainage by needle aspiration or burr hole.
- Capsular resection
- Pharmacological treatments may address specific symptoms such as seizures or pain.
Systemic (intravenous or oral) chemotherapy and intrathecal chemotherapy: Intrathecal therapy is when injection is done directly to the spinal cord into the sub-arachnoid space to avoid the Blood-Brain-Barrier (BBB) and gain direct access to the CSF. Intrathecal Therapy is preferred since intravenous chemotherapy do not penetrate the BBB. The most common chemicals used are liposomal cytarabine (DepoCyte) and intrathecal methotrexate (MTX).
In combination, intrathecal chemotherapy most often comprises methotrexate, cytarabine, thiotepa and steroids. Ventriculoperitoneal shunts may also be applied with chemotherapy to avoid invasive surgery to gain access to the CSF.
An example of treatment:
Intrathecal MTX injection at a dose of 15 mg/day for 5 days every other week with hydrocortisone acetate injecting IT on day one to prevent arachnoiditis, the inflammation of the arachnoid. MTX administration is continued until neurological progression or relapse occurred. Systemic chemotherapy, radiotherapy, and surgery are performed depending on the need of the patient.
Risks of treatments:
Both Chemotherapy and Radiotherapy are harmful to the body and most definitely the brain. Caution must be utilized in treating patients with NM. Another factor that makes treatment difficult is that there is no suitable method to evaluate the disease progression.
A combination of lifestyle modifications and medications can be used for the treatment of dolichoectasias.
- Antihypertensive medications such as Thiazides, Beta Blocker, ACE Inhibitor
- Trental or other Pentoxifylline drugs
- Dietary changes
- Weight loss
- Regular exercise
Dexamethasone (a potent glucocorticoid) in doses of 16 mg/day may reduce edema around the lesion and protect the cord from injury. It may be given orally or intravenously for this indication.
Surgery is indicated in localised compression as long as there is some hope of regaining function. It is also occasionally indicated in patients with little hope of regaining function but with uncontrolled pain. Postoperative radiation is delivered within 2–3 weeks of surgical decompression. Emergency radiation therapy (usually 20 Gray in 5 fractions, 30 Gray in 10 fractions or 8 Gray in 1 fraction) is the mainstay of treatment for malignant spinal cord compression. It is very effective as pain control and local disease control. Some tumours are highly sensitive to chemotherapy (e.g. lymphomas, small-cell lung cancer) and may be treated with chemotherapy alone.
Once complete paralysis has been present for more than about 24 hours before treatment, the chances of useful recovery are greatly diminished, although slow recovery, sometimes months after radiotherapy, is well recognised.
The median survival of patients with metastatic spinal cord compression is about 12 weeks, reflecting the generally advanced nature of the underlying malignant disease.
Most arachnoid cysts are asymptomatic, and do not require treatment. Where complications are present, leaving arachnoid cysts untreated, may cause permanent severe neurological damage due to the progressive expansion of the cyst(s) or hemorrhage (bleeding). However, with treatment most individuals with symptomatic arachnoid cysts do well.
More specific prognoses are listed below:
- Patients with impaired preoperative cognition had postoperative improvement after surgical decompression of the cyst.
- Surgery can resolve psychiatric manifestations in selected cases.
Examples of possible complications include shunt malfunction, shunt failure, and shunt infection, along with infection of the shunt tract following surgery (the most common reason for shunt failure is infection of the shunt tract). Although a shunt generally works well, it may stop working if it disconnects, becomes blocked (clogged), infected, or it is outgrown. If this happens the cerebrospinal fluid will begin to accumulate again and a number of physical symptoms will develop (headaches, nausea, vomiting, photophobia/light sensitivity), some extremely serious, like seizures. The shunt failure rate is also relatively high (of the 40,000 surgeries performed annually to treat hydrocephalus, only 30% are a patient's first surgery) and it is not uncommon for patients to have multiple shunt revisions within their lifetime.
Another complication can occur when CSF drains more rapidly than it is produced by the choroid plexus, causing symptoms - listlessness, severe headaches, irritability, light sensitivity, auditory hyperesthesia (sound sensitivity), nausea, vomiting, dizziness, vertigo, migraines, seizures, a change in personality, weakness in the arms or legs, strabismus, and double vision - to appear when the patient is vertical. If the patient lies down, the symptoms usually vanish quickly. A CT scan may or may not show any change in ventricle size, particularly if the patient has a history of slit-like ventricles. Difficulty in diagnosing overdrainage can make treatment of this complication particularly frustrating for patients and their families. Resistance to traditional analgesic pharmacological therapy may also be a sign of shunt overdrainage "or" failure.
The diagnosis of cerebrospinal fluid buildup is complex and requires specialist expertise. Diagnosis of the particular complication usually depends on when the symptoms appear - that is, whether symptoms occur when the patient is upright or in a prone position, with the head at roughly the same level as the feet.
Alteplase (tpa) is an effective medication for acute ischemic stroke. When given within 3 hours, treatment with tpa significantly improves the probability of a favourable outcome versus treatment with placebo.
The outcome of brain ischemia is influenced by the quality of subsequent supportive care. Systemic blood pressure (or slightly above) should be maintained so that cerebral blood flow is restored. Also, hypoxaemia and hypercapnia should be avoided. Seizures can induce more damage; accordingly, anticonvulsants should be prescribed and should a seizure occur, aggressive treatment should be undertaken. Hyperglycaemia should also be avoided during brain ischemia.
When someone presents with an ischemic event, treatment of the underlying cause is critical for prevention of further episodes.
Anticoagulation with warfarin or heparin may be used if the patient has atrial fibrillation.
Operative procedures such as carotid endarterectomy and carotid stenting may be performed if the patient has a significant amount of plaque in the carotid arteries associated with the local ischemic events.
There is no standard treatment that has been established for NM thus treatments are almost always palliative.
Radiotherapy:
This method is used mostly for focal type of NM due to the nature of damage and success rate associated with the treatment. Radiotherapy targets and tumor and destroys the collective tissues of cancerous cells.
Treatment approaches can include osmotherapy using mannitol, diuretics to decrease fluid volume, corticosteroids to suppress the immune system, hypertonic saline, and surgical decompression to allow the brain tissue room to swell without compressive injury.
Treatment involves removal of the etiologic mass and decompressive craniectomy. Brain herniation can cause severe disability or death. In fact, when herniation is visible on a CT scan, the prognosis for a meaningful recovery of neurological function is poor. The patient may become paralyzed on the same side as the lesion causing the pressure, or damage to parts of the brain caused by herniation may cause paralysis on the side opposite the lesion. Damage to the midbrain, which contains the reticular activating network which regulates consciousness, will result in coma. Damage to the cardio-respiratory centers in the medulla oblongata will cause respiratory arrest and (secondarily) cardiac arrest. Current investigation is underway regarding the use of neuroprotective agents during the prolonged post-traumatic period of brain hypersensitivity associated with the syndrome.
Hydrocephalus can be successfully treated by placing a drainage tube (shunt) between the brain ventricles and abdominal cavity. There is some risk of infection being introduced into the brain through these shunts, however, and the shunts must be replaced as the person grows. A subarachnoid hemorrhage may block the return of CSF to the circulation.
This should be distinguished from external hydrocephalus. This is a condition generally seen in infants and involving enlarged fluid spaces or subarachnoid spaces around the outside of the brain. This is generally a benign condition that resolves spontaneously by 2 years of age. (Greenberg, Handbook of Neurosurgery, 5th Edition, pg 174). Imaging studies and a good medical history can help to differentiate external hydrocephalus from subdural hemorrhages or symptomatic chronic extra-axial fluid collections which are accompanied by vomiting, headaches and seizures.
Hydrocephalus treatment is surgical, creating a way for the excess fluid to drain away. In the short term, an external ventricular drain (EVD), also known as an extraventricular drain or ventriculostomy, provides relief. In the long term, some patients will need any of various types of cerebral shunt. It involves the placement of a ventricular catheter (a tube made of silastic) into the cerebral ventricles to bypass the flow obstruction/malfunctioning arachnoidal granulations and drain the excess fluid into other body cavities, from where it can be resorbed. Most shunts drain the fluid into the peritoneal cavity (ventriculo-peritoneal shunt), but alternative sites include the right atrium (ventriculo-atrial shunt), pleural cavity (ventriculo-pleural shunt), and gallbladder. A shunt system can also be placed in the lumbar space of the spine and have the CSF redirected to the peritoneal cavity (Lumbar-peritoneal shunt). An alternative treatment for obstructive hydrocephalus in selected patients is the endoscopic third ventriculostomy (ETV), whereby a surgically created opening in the floor of the third ventricle allows the CSF to flow directly to the basal cisterns, thereby shortcutting any obstruction, as in aqueductal stenosis. This may or may not be appropriate based on individual anatomy. For infants, ETV is sometimes combined with choroid plexus cauterization, which reduces the amount of cerebrospinal fluid produced by the brain. The technique, known as ETV/CPC was pioneered in Uganda by neurosurgeon Ben Warf and is now in use in several U.S. hospitals.
As with other types of intracranial hematomas, the blood may be removed surgically to remove the mass and reduce the pressure it puts on the brain. The hematoma is evacuated through a burr hole or craniotomy. If transfer to a facility with neurosurgery is prolonged trephination may be performed in the emergency department.
Mild cases of hemifacial spasm may be managed with sedation or carbamazepine (an anticonvulsant drug). Microsurgical decompression and botulinum toxin injections are the current main treatments used for hemifacial spasm.
Botulinum toxin is highly effective in the treatment of hemifacial spasm. It has a success rate equal to that of surgery, but repeated injections may be required every 3 to 6 months. The injections are administered as an outpatient or office procedure. Whilst side effects occur, these are never permanent. Repeated injections over the years remain highly effective. Whilst the toxin is expensive, the cost of even prolonged courses of injections compares favourably with the cost of surgery. Patients with HFS should be offered a number of treatment options. Very mild cases or those who are reluctant to have surgery or Botulinum toxin injections can be offered medical treatment, sometimes as a temporary measure. In young and fit patients microsurgical decompression and Botulinum injections should be discussed as alternative procedures. In the majority of cases, and especially in the elderly and the unfit, Botulinum toxin injection is the treatment of first choice. Imaging procedures should be done in all unusual cases of hemifacial spasm and when surgery is contemplated. Patients with hemifacial spasm were shown to have decreased sweating after botulinum toxin injections. This was first observed in 1993 by Khalaf Bushara and David Park. This was the first demonstration of nonmuscular use of BTX-A. Bushara further showed the efficacy of botulinum toxin in treating hyperhidrosis (excessive sweating). BTX-A was later approved for the treatment of excessive underarm sweating. This is technically known as severe primary axillary hyperhidrosis – excessive underarm sweating with an unknown cause which cannot be managed by topical agents (see focal hyperhidrosis).
Treatment options are either surgical or non-surgical. Overall evidence is inconclusive whether non-surgical or surgical treatment is the better for lumbar spinal stenosis.
While there is no current cure, the treatments for Chiari malformation are surgery and management of symptoms, based on the occurrence of clinical symptoms rather than the radiological findings. The presence of a syrinx is known to give specific signs and symptoms that vary from dysesthetic sensations to algothermal dissociation to spasticity and paresis. These are important indications that decompressive surgery is needed for patients with Chiari Malformation Type II. Type II patients have severe brain stem damage and rapidly diminishing neurological response.
Decompressive surgery involves removing the lamina of the first and sometimes the second or third cervical vertebrae and part of the occipital bone of the skull to relieve pressure. The flow of spinal fluid may be augmented by a shunt. Since this surgery usually involves the opening of the dura mater and the expansion of the space beneath, a dural graft is usually applied to cover the expanded posterior fossa.
A small number of neurological surgeons believe that detethering the spinal cord as an alternate approach relieves the compression of the brain against the skull opening (foramen magnum), obviating the need for decompression surgery and associated trauma. However, this approach is significantly less documented in the medical literature, with reports on only a handful of patients. It should be noted that the alternative spinal surgery is also not without risk.
Complications of decompression surgery can arise. They include bleeding, damage to structures in the brain and spinal canal, meningitis, CSF fistulas, occipito-cervical instability and pseudomeningeocele. Rare post-operative complications include hydrocephalus and brain stem compression by retroflexion of odontoid. Also, an extended CVD created by a wide opening and big duroplasty can cause a cerebellar "slump". This complication needs to be corrected by cranioplasty.
In certain cases, irreducible compression of the brainstem occurs from in front (anteriorly or ventral) resulting in a smaller posterior fossa and associated Chiari malformation. In these cases, an anterior decompression is required. The most commonly used approach is to operate through the mouth (transoral) to remove the bone compressing the brainstem, typically the odontoid. This results in decompressing the brainstem and therefore gives more room for the cerebellum, thus decompressing the Chiari malformation. Arnold Menzes, MD, is the neurosurgeon who pioneered this approach in the 1970s at the University of Iowa. Between 1984 and 2008 (the MR imaging era), 298 patients with irreducible ventral compression of the brainstem and Chiari type 1 malformation underwent a transoral approach for ventral cervicomedullary decompression at the University of Iowa. The results have been excellent resulting in improved brainstem function and resolution of the Chiari malformation in the majority of patients.
The effectiveness of non surgical treatments is unclear as they have not been well studied.
- Education about the course of the condition and how to relieve symptoms
- Medicines to relieve pain and inflammation, such as acetaminophen, nonsteroidal anti-inflammatory drugs (NSAIDs)
- Exercise, to maintain or achieve overall good health, aerobic exercise, such as riding a stationary bicycle, which allows for a forward lean, walking, or swimming can relieve symptoms
- Weight loss, to relieve symptoms and slow progression of the stenosis
- Physical therapy to support self-care. Also may give instructs on stretching and strength exercises that may lead to a decrease in pain and other symptoms.
- Lumbar epidural steroid or anesthetic injections have low quality evidence to support their use.
Treatment can include pharmaceutical or surgical means. The drug carbamazepine (Tegretol) has been used successfully. Other drugs used with variable success include gabapentin and, recently, memantine. Successful surgery options include superior oblique tenectomy accompanied by inferior oblique myectomy. However, "Overall, the bulk of the ophthalmic literature would agree with the viewpoint that invasive craniotomy surgical procedures should be justified only by the presence of intractable and absolutely unbearable symptoms."
Samii et al. and Scharwey and Samii described a patient who had superior oblique myokymia for 17 years. The interposition of a Teflon pad between the trochlear nerve and a compressing artery and vein at the nerve's exit from the midbrain led to a remission lasting for a follow-up of 22 months.
Many cases resolve within 1–2 weeks of controlling blood pressure and eliminating the inciting factor. However some cases may persist with permanent neurologic impairment in the form of visual changes and seizures among others. Though uncommon, death may occur with progressive swelling of the brain (cerebral edema), compression of the brainstem, increased intracranial pressure, or a bleed in the brain (intracerebral hemorrhage). PRES may recur in about 5-10% of cases; this occurs more commonly in cases precipitated by hypertension as opposed to other factors (medications, etc.).
When an underlying medical condition is causing the neuropathy, treatment should first be directed at this condition. For example, if weight gain is the underlying cause, then a weight loss program is the most appropriate treatment. Compression neuropathy occurring in pregnancy often resolves after delivery, so no specific treatment is usually required. Some compression neuropathies are amenable to surgery: carpal tunnel syndrome and cubital tunnel syndrome are two common examples. Whether or not it is appropriate to offer surgery in any particular case depends on the severity of the symptoms, the risks of the proposed operation, and the prognosis if untreated. After surgery, the symptoms may resolve completely, but if the compression was sufficiently severe or prolonged then the nerve may not recover fully and some symptoms may persist. Drug treatment may be useful for an underlying condition (including peripheral oedema), or for ameliorating neuropathic pain.
Treatment of any kind of complex visual hallucination requires an understanding of the different pathologies in order to correctly diagnose and treat. If a person is taking a pro-hallucinogenic medication, the first step is to stop taking it. Sometimes improvement will occur spontaneously and pharmacotherapy is not necessary. While there is not a lot of evidence of effective pharmacological treatment, antipsychotics and anticonvulsants have been used in some cases to control hallucinations. Since peduncular hallucinosis occurs due to an excess of serotonin, modern antipsychotics are used to block both dopamine and serotonin receptors, preventing the overstimulation of the lateral geniculate nucleus. The drug generically called carbamazepine increases GABA, which prevents the LGN from firing, thereby increasing the inhibition of the LGN. Regular antipsychotics as well as antidepressants can also be helpful in reducing or eliminating peduncular hallucinosis.
More invasive treatments include corrective surgery such as cataract surgery, laser photocoagulation of the retina, and use of optical correcting devices. Tumor removal can also help to relieve compression in the brain, which can decrease or eliminate peduncular hallucinosis. Some hallucinations may be due to underlying cardiovascular disease, so in these cases the appropriate treatment includes control of hypertension and diabetes. As described, the type of treatment varies widely depending on the causation behind the complex visual hallucinations.