Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment of Roberts syndrome is individualized and specifically aimed at improving the quality of life for those afflicted with the disorder. Some of the possible treatments include: surgery for the cleft lip and palate, correction of limb abnormalities (also through surgery), and improvement in prehensile hand grasp development.
The outcome of this disease is dependent on the severity of the cardiac defects. Approximately 1 in 3 children with this diagnosis require shunting for the hydrocephaly that is often a consequence. Some children require extra assistance or therapy for delayed psychomotor and speech development, including hypotonia.
If a contracture is less than 30 degrees, it may not interfere with normal functioning. The common treatment is splinting and occupational therapy. Surgery is the last option for most cases as the result may not be satisfactory.
There is no medical treatment for either syndrome but there are some recommendations that can help with prevention or early identification of some of the problems. Children with either syndrome should have their hearing tested, and adults should be aware that the hearing loss may not develop until the adult years. Yearly visits to an ophthalmologist or other eye care professional who has been informed of the diagnosis of Stickler or Marshall syndrome is important for all affected individuals. Children should have the opportunity to have myopia corrected as early as possible, and treatment for cataracts or detached retinas may be more effective with early identification. Support for the joints is especially important during sports, and some recommend that contact sports should be avoided by those who have very loose joints.
In terms of treatment/management one should observe what signs or symptoms are present and therefore treat those as there is no other current guideline. The affected individual should be monitored for cancer of:
- Thyroid
- Breast
- Renal
At the 2005 American Society of Human Genetics meeting, Francis Collins gave a presentation about a treatment he devised for children affected by Progeria. He discussed how farnesyltransferase inhibitor (FTI) affects H-Ras. After his presentation, members of the Costello Syndrome Family Network discussed the possibility of FTIs helping children with Costello syndrome. Mark Kieran, who presented at the 1st International Costello Syndrome Research Symposium in 2007, agreed that FTIs might help children with Costello syndrome. He discussed with Costello advocates what he had learned in establishing and running the Progeria clinical trial with an FTI, to help them consider next steps.
Another medication that affects H-Ras is Lovastatin, which is planned as a treatment for neurofibromatosis type I. When this was reported in mainstream news, the Costello Syndrome Professional Advisory Board was asked about its use in Costello Syndrome. Research into the effects of Lovastatin was linked with Alcino Silva, who presented his findings at the 2007 symposium. Silva also believed that the medication he was studying could help children with Costello syndrome with cognition.
A third medication that might help children with Costello syndrome is a MEK inhibitor that helps inhibit the pathway closer to the cell nucleus.
Many professionals that are likely to be involved in the treatment of those with Stickler's syndrome, include anesthesiologists, oral and maxillofacial surgeons; craniofacial surgeons; ear, nose, and throat specialists, ophthalmologists, optometrists, audiologists, speech pathologists, physical therapists and rheumatologists.
Prognoses for 3C syndrome vary widely based on the specific constellation of symptoms seen in an individual. Typically, the gravity of the prognosis correlates with the severity of the cardiac abnormalities. For children with less severe cardiac abnormalities, the developmental prognosis depends on the cerebellar abnormalities that are present. Severe cerebellar hypoplasia is associated with growth and speech delays, as well as hypotonia and general growth deficiencies.
Because Cherubism changes and improves over time the treatment should be individually determined. Generally moderate cases are watched until they subside or progress into the more severe range. Severe cases may require surgery to eliminate bulk cysts and fibrous growth of the maxilla and mandible. Surgical bone grafting of the cranial facial bones may be successful on some patients. Surgery is preferred for patients ages 5 to 15. Special consideration should be taken when operating on the face to avoid the marginal mandibular branch of the facial nerve as well as the zygomatic branch of the facial nerve. Unintentional damage to these nerves can decrease muscle strength in the face and mandible region. Orthodontic treatment is generally required to avoid permanent dental problems arising from malocclusive bite, misplaced, and unerupted permanent teeth. Orthodontic treatment may be used to erupt permanent teeth that have been unable to descend due to lesions and cysts being in their path of eruption. Patients with orbital issues of diplopia, eye proptosis, and visual loss will require ophthalmologic treatment.
There is no cure for Williams syndrome. Suggestions include avoidance of extra calcium and vitamin D, as well as treating high levels of blood calcium. Blood vessel narrowing can be a significant health problem, and is treated on an individual basis.
Physical therapy is helpful to patients with joint stiffness and low muscle tone. Developmental and speech therapy can also help children and increase the success of their social interactions. Other treatments are based on a patient's particular symptoms.
The American Academy of Pediatrics recommends annual cardiology evaluations for individuals with Williams syndrome. Other recommended assessments include: ophthalmologic evaluations, an examination for inguinal hernia, objective hearing assessment, blood pressure measurement, developmental and growth evaluation, orthopedic assessments on joints, muscle tone, and ongoing feeding and dietary assessments to manage constipation and urinary problems.
Behavioral treatments have been shown to be effective. In regards to social skills it may be effective to channel their nature by teaching basic skills. Some of these are the appropriate way to approach someone, how and when to socialize in settings such as school or the workplace, and warning of the signs and dangers of exploitation. For the fear that they demonstrate cognitive-behavioral approaches, such as therapy, are the recommended treatment. One of the things to be careful of with this approach is to make sure that the patients' charming nature does not mask any underlying feelings.
Perhaps the most effective treatment for those with Williams syndrome is music. Those with Williams syndrome have shown a relative strength in regards to music, albeit only in pitch and rhythm tasks. Not only do they show a strength in the field but also a particular fondness for it. It has been shown that music may help with the internal and external anxiety that these people are more likely to be afflicted with. Something of note is that the typical person processes music in the superior temporal and middle temporal gyri. Those with Williams syndrome have a reduced activation in these areas but an increase in the right amygdala and cerebellum.
People affected by Williams syndrome are supported by multiple organizations, including the Canadian Association for Williams Syndrome and the Williams Syndrome Registry.
Most recent methods of treatment take the form of surgeries such as oral prophylaxis, followed by post-surgical therapies to monitor, provide proper oral hygiene, and correct the deformity. Although, the nature of recurrence post-treatment is virtually unknown, let alone what type of treatment is most effective for HGF. (SOURCE 2) In some cases, there is re-growth after surgical removal of the excess gingival tissues, in others there is minimal. No cases yet have shown any particular treatment or form of medicine to permanently remove HGF.
One type of procedure that can be executed is as follows: Removal of excess tissue under anesthesia through an internal bevel gingivectomy or undisplaced flap followed by gingivoplasty and continuous sling suture placements and periodontal dressing; after about a week of recovery after the surgery, remove sutures and periodically do observational evaluations to look for any signs of re-occurrence.
This disease has not been shown to be life-threatening or the cause of death in patients. However, treatment is necessary to maintain a healthy lifestyle.
It can be detected by the naked eye as well as dental or skull X-Ray testing.
Because this genetic anomaly is genetically linked, genetic counseling may be the only way to decrease occurrences of Cherubism. The lack of severe symptoms in the parents may be the cause of failure in recognizing the disorder. The optimal time to be tested for mutations is prior to having children. The disorder results from a genetic mutation, and this gene has been found to spontaneously mutate. Therefore, there may be no prevention techniques available.
Roberts syndrome, or sometimes called "pseudothalidomide syndrome", is an extremely rare genetic disorder that is characterized by mild to severe prenatal retardation or disruption of cell division, leading to malformation of the bones in the skull, face, arms, and legs.
Roberts syndrome is also known by many other names, including: hypomelia-hypotrichosis-facial hemangioma syndrome, SC syndrome (once thought to be an entirely separate disease), pseudothalidomide syndrome, Roberts-SC phocomelia syndrome, SC phocomelia syndrome, Appelt-Gerken-Lenz syndrome, RBS, SC pseudothalidomide syndrome, and tetraphocomelia-cleft palate syndrome. It is a genetic disorder caused by the mutation of the ESCO2 gene on 8th chromosome. Named after the famous Philadelphia surgeon and physician, Dr. John Bingham Roberts (1852–1924), who first described the syndrome in 1919, it is one of the rarest autosomal recessive disorders, affecting approximately 150 known individuals.
The syndrome is both autosomal, in that there are equal numbers of copies of the gene in both males and females, and recessive, meaning the child must inherit the defective gene from both parents. The mutation causes cell division to occur slowly or unevenly, and the cells with abnormal genetic content die. Roberts syndrome can affect both males and females. Although the disorder is rare, the affected group is diverse. The mortality rate is high in severely affected individuals.
Spanish researchers reported the development of a Costello mouse, with the G12V mutation, in early 2008. Although the G12V mutation is rare among children with Costello syndrome, and the G12V mouse does not appear to develop tumors as expected, information about the mouse model's heart may be transferrable to humans.
Italian and Japanese researchers published their development of a Costello zebrafish in late 2008, also with the G12V mutation. The advent of animal models may accelerate identification of treatment options.
There is no cure for FASD, but treatment is possible. Because CNS damage, symptoms, secondary disabilities, and needs vary widely by individual, there is no one treatment type that works for everyone.
Psychoactive drugs are frequently tried on those with FASD as many FASD symptoms are mistaken for or overlap with other disorders, most notably ADHD.
A DCR is the treatment of choice for most patients with acquired NLD obstruction. Surgical indications include recurrent dacryocystitis, chronic mucoid reflux, painful distension of the lacrimal sac, and bothersome epiphora. For patients with dacryocystitis, active infection should be cleared, if possible, before DCR is performed.
Acrocephalosyndactylia (or acrocephalosyndactyly) is the common presentation of craniosynostosis and syndactyly.
It has several different types:
- type 1 - Apert syndrome
- type 2 - Crouzon syndrome
- type 3 - Saethre-Chotzen syndrome
- type 5 - Pfeiffer syndrome
A related term, "acrocephalopolysyndactyly" (ACPS), refers to the inclusion of polydactyly to the presentation. It also has multiple types:
- type 1 - Noack syndrome; now classified with Pfeiffer syndrome
- type 2 - Carpenter syndrome
- type 3 - Sakati-Nyhan-Tisdale syndrome
- type 4 - Goodman syndrome; now classified with Carpenter syndrome
- type 5 - Pfeiffer syndrome
It has been suggested that the distinction between "acrocephalosyndactyly" versus "acrocephalopolysyndactyly" should be abandoned.
While not always pathological, it can present as a birth defect in multiple syndromes including:
- Catel–Manzke syndrome
- Bloom syndrome
- Coffin–Lowry syndrome
- congenital rubella
- Cri du chat syndrome
- DiGeorge's syndrome
- Ehlers-Danlos syndrome
- fetal alcohol syndrome
- Hallermann-Streiff syndrome
- Hemifacial microsomia (as part of Goldenhar syndrome)
- Juvenile idiopathic arthritis
- Marfan syndrome
- Noonan syndrome
- Pierre Robin syndrome
- Prader–Willi syndrome
- Progeria
- Russell-Silver syndrome
- Seckel syndrome
- Smith-Lemli-Opitz syndrome
- Treacher Collins syndrome
- Trisomy 13 (Patau syndrome)
- Trisomy 18 (Edwards syndrome)
- Wolf–Hirschhorn syndrome
- X0 syndrome (Turner syndrome)
Some clinicians believe that partial stenosis of the NLD with symptomatic epiphora sometimes responds to surgical intubation of the entire lacrimal drainage system. This procedure should be performed only if the tubes can be passed easily. In complete NLD obstruction, intubation alone is not effective, and a DCR should be considered.
Antihistamines are not effective in treating the hives in this condition. It may respond to immunosuppressant drugs such as corticosteroids, cyclooxygenase inhibitors, interferon alpha, interleukin 1 receptor antagonists (Anakinra), perfloxacin, colchicine, cyclosporine or thalidomide. The hives may respond to treatment with PUVA, and the bone pain may respond to bisphosphonates.
Because Schnitzler's syndrome is so rare, the efficacy of different treatments cannot be compared using statistics. Nevertheless, case studies provide evidence that anakinra (otherwise known as kineret) is much more effective for Schnitzler's syndrome than any other drug, and that the improvement in symptoms associated with this treatment is dramatic. For example, Beseda and Nossent (2010) reviewed the literature concerning IL1-RA treatment (i.e. anakinra) for Schnitzler's syndrome. They concluded that, “Twenty-four patients with Schnitzler's syndrome... have been successfully treated with anakinra.” They add that “seven out of seven patients [with Schnitzler’s syndrome], that either interrupted or used anakinra every other day, had relapse of their symptoms within 24-48 h; anakinra was restarted in all patients with the same clinical efficiency.” Kluger et al. (2008) investigated the effectiveness of anakinra for a range of conditions. They searched MEDLINE for English-language trials of anakinra and abstracts from rheumatologial scientific meetings. They conclude that, “Over the last few years it has become increasingly evident that anakinra is highly effective and safe in patients with ... Schnitzler’s syndrome”. The year before, De Koning et al. (2007) reviewed the disease characteristics of Schnitzler syndrome and collected follow-up information to gain insight into long-term prognosis and treatment efficacy. They used data from 94 patients, and their conclusions about treatment for the condition are that, “There have been promising developments in therapeutic options, especially antiinterleukin-1 treatment, which induced complete remission in all 8 patients treated so far.”
Reports of individual patients treated with anakinra illustrate its effectiveness. Beseda and Nossent (ibid.) report treating a longstanding multidrug resistant Schnitzler’s syndrome patient with anakinra: “Within 24 h after the first injection, both the urticaria and the fever disappeared and have not recurred. For the past 6 months, the patient has been in clinical and biochemical remission.” Other authors report “a complete resolution of symptoms” (Dybowski et al., 2008). Crouch et al. (2007) report the effective treatment of a 52-year-old man who had been diagnosed with Schnitzler’s syndrome 8 years earlier: “On review, one week later, the patient’s systemic symptoms had resolved, and his previously elevated white cell count and inflammatory markers had normalised. The use of anakinra in our patient resulted in resolution of symptoms and has enabled cessation of oral prednisolone. Our patient remains symptom free on anakinra after 14 months of follow-up”. Similar stories are reported by Frischmeyer-Guerrerio et al. (2008), Wastiaux et al. (2007), and Eiling et al. (2007), Schneider et al. (2007). De Koning et al. (2006) treated three patients with Schnitzler’s syndrome with thalidomide and anakinra. Thalidomide was only effective for one of the three patients and was discontinued because of polyneuropathy. In contrast, for all three patients, anakinra “led to disappearance of fever and skin lesions within 24 hours. After a follow-up of 16-18 months, all patients are free of symptoms”. The authors concluded that anakinra as a treatment for Schnitzler’s syndrome “is preferable to thalidomide... as it has fewer side effects”.
As well as being more effective, anakinra is safer than the other treatments available for Schnitzler's syndrome. The Cochrane review entitled, ‘Anakinra for rheumatoid arthritis’ (Mertens and Singh, 2009 ) evaluates the (clinical effectiveness and) safety of anakinra in adult patients with rheumatoid arthritis, using data from 2876 patients, from five trials which constituted 781 randomized to placebo and 2065 to anakinra. The authors conclude, “There were no statistically significant differences noted in most safety outcomes with treatment with anakinra versus placebo - including number of withdrawals, deaths, adverse events (total and serious), and infections (total and serious). Injection site reactions were significantly increased, occurring in 1235/1729 (71%) versus 204/729 (28%) of patients treated with anakinra versus placebo, respectively”. These injection site reactions last for no more than four months, and are trivial compared to the very debilitating symptoms of Schnitzler's syndrome.
Nevo Syndrome is a rare autosomal recessive disorder that usually begins during the later stages of pregnancy. Nevo Syndrome is caused by a NSD1 deletion, which encodes for methyltransferase involved with chromatin regulation. The exact mechanism as to how the chromatin is changed is unknown and still being studied. Nevo Syndrome is an example of one of about twelve overgrowth syndromes known today. Overgrowth syndromes are characterized with children experiencing a significant overgrowth during pregnancy and also excessive postnatal growth. Studies concerning Nevo Syndrome have shown a similar relation to Ehlers-Danlos syndrome, a connective tissue disorder. Nevo Syndrome is associated with kyphosis, an abnormal increased forward rounding of the spine, joint laxity, postpartum overgrowth, a highly arched palate, undescended testes in males, low-set ears, increased head circumference, among other symptoms.