Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Most children with symbrachydactyly have excellent function in daily activities. Due to the length of their arm, they do not qualify for most artificial limbs. However, some adaptive prosthetics and equipment for sports and leisure activities may be helpful when the child is older. Children who demonstrate some functional movement in their remaining fingers and within the palm are evaluated for possible surgery such as toe transfers.
The timing of surgical interventions is debatable. Parents have to decide about their child in a very vulnerable time of their parenthood. Indications for early treatment are progressive deformities, such as syndactyly between index and thumb or transverse bones between the digital rays. Other surgical interventions are less urgent and can wait for 1 or 2 years.
When surgery is indicated, the choice of treatment is based on the classification. Table 4 shows the treatment of cleft hand divided into the classification of Manske and Halikis.
Techniques described by Ueba, Miura and Komada and the procedure of Snow-Littler are guidelines; since clinical and anatomical presentation within the types differ, the actual treatment is based on the individual abnormality.
Table 4: Treatment based on the classification of Manske and Halikis
There is no standard treatment for the hand malformations in Apert due to the differences and severity in clinical manifestations in different patients. Every patient should therefore be individually approached and treated, aiming at an adequate balance between hand functionality and aesthetics.
However, some guidelines can be given depending on the severity of the deformities.
In general it is initially recommended to release the first and fourth interdigital spaces, thus releasing the border rays.
This makes it possible for the child to grasp things by hand, a very important function for the child's development. Later the second and third interdigital spaces have to be released.
Because there are three handtypes in Apert, all with their own deformities, they all need a different approach regarding their treatment:
- Type I hand usually needs only the interdigital web space release. First web release is rarely needed but often its deepening is necessary. Thumb clynodactyly correction will be needed.
- In type II hands it is recommended to release the first and fifth rays in the beginning, then the second and the third interdigital web spaces have to be freed. The clynodactyly of the thumb has to be corrected as well. The lengthening of the thumb phalanx may be needed, thus increasing the first web space. In both type I and type II, the recurrent syndactyly of the second web space will occur because of a pseudoepiphysis at the base of the index metacarpal. This should be corrected by later revisions.
- Type III hands are the most challenging to treat because of their complexity. First of all, it is advised to release the first and fourth webspace, thus converting it to type I hand. The treatment of macerations and nail-bed infections should also be done in the beginning. For increasing of the first web space, lengthening of the thumb can be done. It is suggested that in severe cases an amputation of the index finger should be considered. However, before making this decision, it is important to weigh the potential improvement to be achieved against the possible psychological problems of the child later due to the aesthetics of the hand. Later, the second and/or third interdigital web space should be released.
With growing of a child and respectively the hands, secondary revisions are needed to treat the contractures and to improve the aesthetics.
Because neither of the two thumb components is normal, a decision should be taken on combining which elements to create the best possible composite digit. Instead of amputating the most hypoplastic thumb, preservation of skin, nail, collateral ligaments and tendons is needed to augment the residual thumb. Surgery is recommended in the first year of life, generally between 9 and 15 months of age.
Surgical options depend on type of polydactyly.
Webbed toes can be separated through surgery. Surgical separation of webbed toes is an example of body modification.
As with any form of surgery, there are risks of complications.
The end results depend on the extent of the webbing and underlying bone structure. There is usually some degree of scarring, and skin grafts may be required. In rare instances, nerve damage may lead to loss of feeling in the toes and a tingling sensation. There are also reports of partial web grow-back. The skin grafts needed to fill in the space between the toes can lead to additional scars in the places where the skin is removed.
This type of procedure is recommended for Wassel types 1 and 2 (in which both thumbs are severely hypoplastic) by some congenital hand surgeons. The technique contains a composite wedge resection of the central bone and soft-tissue. This will be achieved with approach of the lateral tissue of each thumb. The goal is to achieve a normal thumb, what concerns the size, which is possible. If the width of the nail bed is greater than 70% of the contralateral thumb, it may be split. Then the nail bed will be repaired precisely.
Surgical correction is recommended when a constriction ring results in a limb contour deformity, with or without lymphedema.
Surgery is an option to correct some of the morphological changes made by Liebenberg Syndrome. Cases exist where surgery is performed to correct radial deviations and flexion deformities in the wrist. A surgery called a carpectomy has been performed on a patient whereby a surgeon removes the proximal row of the carpal bones. This procedure removes some of the carpal bones to create a more regular wrist function than is observed in people with this condition.
At the beginning of the surgery a tourniquet will be applied to the limb. A tourniquet compresses and control the arterial and venous circulation for about 2 hours. The constriction band must be dissected very carefully to avoid damaging the underlying neurovasculature. When the constriction band is excised, there will be a direct closure. This allows the fatty tissue to naturally reposition itself under the skin.
“With complete circumferential constriction bands, it is recommended that a two-stage correction approach be used. At the first operation, one-half of the circumference is excised and the other one-half can be excised after three to six months. This will avoid any problems to the distal circulation in the limb, which may already be compromised. Lymphedema, when present, will significantly improve within a few weeks of the first surgery.”
For the direct closure of the defect after dissecting a constriction band there are two different techniques:
1. Triangular flaps; For this technique the circumference between the two borders must be measured. Depending on the difference the number of triangular flaps can be decided. With a triangular flap you can create more skin.
2. Z/W-plasty; “Z-plasty is a plastic surgery technique that is used to improve the functional and cosmetic appearance of scars. It can elongate a contracted scar or rotate the scar tension line. The middle line of the Z-shaped incision (the central element) is made along the line of greatest tension or contraction, and triangular flaps are raised on opposite sides of the two ends and then transposed.”
In rare cases, if diagnosed in utero, fetal surgery may be considered to save a limb that is in danger of amputation or other deformity. This operation has been successfully performed on fetuses as young as 22 weeks. The Melbourne's Monash Medical Centre in Australia, as well as multiple facilities in the United States of America, have performed successful amniotic band release surgery.
A number of features found with Nasodigitoacoustic syndrome can be managed or treated. Sensorineural hearing loss in humans may be caused by a loss of hair cells (sensory receptors in the inner ear that are associated with hearing). This can be hereditary and/or within a syndrome, as is the case with nasodigitoacoustic syndrome, or attributed to infections such as viruses. For the management of sensorineural hearing loss, hearing aids have been used. Treatments, depending upon the cause and severity, may include a pharmacological approach (i.e., the use of certain steroids), or surgical intervention, like a cochlear implant.
Pulmonary, or pulmonic stenosis is an often congenital narrowing of the pulmonary valve; it can be present in nasodigitoacoustic-affected infants. Treatment of this cardiac abnormality can require surgery, or non-surgical procedures like balloon valvuloplasty (widening the valve with a balloon catheter).
Symptomatic individuals should be seen by an orthopedist to assess the possibility of treatment (physiotherapy for muscular strengthening, cautious use of analgesic medications such as nonsteroidal anti-inflammatory drugs). Although there is no cure, surgery is sometimes used to relieve symptoms. Surgery may be necessary to treat malformation of the hip (osteotomy of the pelvis or the collum femoris) and, in some cases, malformation (e.g., genu varum or genu valgum). In some cases, total hip replacement may be necessary. However, surgery is not always necessary or appropriate.
Sports involving joint overload are to be avoided, while swimming or cycling are strongly suggested. Cycling has to be avoided in people having ligamentous laxity.
Weight control is suggested.
The use of crutches, other deambulatory aids or wheelchair is useful to prevent hip pain. Pain in the hand while writing can be avoided using a pen with wide grip.
The physical abnormalities resulting from SCS are typically mild and only require a minor surgical procedure or no procedure at all. One of the common symptoms of SCS is the development of short (brachydactyly), webbed fingers and broad toes (syndactyly). These characteristics do not cause any problems to the function of the hands or feet, and thus, no medical procedure is required to fix the abnormalities, unless the patient requests it. Webbing of the fingers may affect the base of the fingers, resulting in delayed hand growth during childhood, but this contributes no functional impairments. Sometimes, individuals with SCS develop broad toes because the bones at the ends of the toes are duplicating themselves. This is especially seen in the big toe, but requires no surgical intervention because it doesn't negatively affect the overall function of the foot. Individuals with these toe abnormalities walk normally and can wear normal footwear.
In more severe cases, frequent surgeries and clinical monitoring are required throughout development. A child born with asymmetrical unilateral coronal synostosis should undergo cranioplasty within its first year of life in order to prevent increased intracranial pressure and to prevent progressive facial asymmetry. Cranioplasty is a surgical procedure to correct prematurely fused cranial bones. The surgery acts to reconstruct and reposition the bones and sutures in order to promote the most normal growth. Cranioplasty is necessary in order to continue to grow and is important for two main reasons. First of all, the skull needs to be able to accommodate the growing brain following childbirth, which it can't because the skull doesn't grow as fast as the brain as long as the sutures remain fused. This results in an increase in pressure surrounding the brain and inhibits the brain from growing, causing the individual to experience significant problems, and if left untreated can eventually lead to death. Secondly, cranioplasty may be required for appearance purposes. This is especially the case in individuals with asymmetrical unilateral coronal synostosis, which requires reconstructive surgery of the face and skull. If cranioplasty is not performed, especially in individuals with unilateral coronal synostosis, then facial asymmetry will get worse and worse over time, which is why cranioplasty should be performed as soon as possible.
Surgery may also be required in individuals with vision problems. Vision problems usually arise due to a lack of space in the eye orbit and skull because of the abnormal bone structure of the face. Decreased space may also lead to abnormal or missing tear ducts and nerve damage. Reconstructive surgery is usually required in order to increase cranial space, correct tear duct stenosis, and/or correct ptosis of the eyelids in order to prevent amblyopia (lazy eye).
Midfacial surgery may also be required during early childhood to correct respiratory problems, dental malocclusion, and swallowing difficulties. A cleft palate is also corrected with surgery, and may involve the use of tympanostomy tubes. If needed, an individual will undergo orthognathic treatment and/or orthodontic treatment after facial development is complete. Since hearing loss is frequently associated with SCS, it is recommended that audiology screening persist throughout childhood.
After cranial reconstructive surgery, a child may be required to wear a molding helmet or some other form of head protection until the cranial bones set into place. This typically takes about three months and depends on the child's age and the severity of the condition. Following recovery, individuals with SCS look and act completely normal, so no one would even be able to tell that they have SCS.
Surgery is needed to prevent the closing of the coronal sutures from damaging brain development. In particular, surgeries for the LeFort III or monobloc midface distraction osteogenesis which detaches the midface or the entire upper face, respectively, from the rest of the skull, are performed in order to reposition them in the correct plane. These surgeries are performed by both plastic and oral and maxillofacial (OMS) surgeons, often in collaboration.
The key problem is the early fusion of the skull, which can be corrected by a series of surgical procedures, often within the first three months after birth. Later surgeries are necessary to correct respiratory and facial deformities.
Studies suggest that prenatal care for mothers during their pregnancies can prevent congenital amputation. Knowing environmental and genetic risks is also important. Heavy exposure to chemicals, smoking, alcohol, poor diet, or engaging in any other teratogenic activities while pregnant can increase the risk of having a child born with a congenital amputation. Folic acid is a multivitamin that has been found to reduce birth defects.
In many cases, conservative treatment consisting of physical therapy and new shoes with soft, spacious toe boxes is enough to resolve the condition, while in more severe or longstanding cases Hammertoe Surgery may be necessary to correct the deformity. The patient's doctor may also prescribe some toe exercises that can be done at home to stretch and strengthen the muscles. For example, the individual can gently stretch the toes manually, or use the toes to pick things up off the floor. While watching television or reading, one can put a towel flat under the feet and use the toes to crumple it. The doctor can also prescribe a brace that pushes down on the toes to force them to stretch out their muscles.
Vasodilators improve the blood flow into the vessels of the hoof. Examples include isoxsuprine (currently unavailable in the UK) and pentoxifylline.
Anticoagulants can also improve blood flow. The use of warfarin has been proposed, but the extensive monitoring required makes it unsuitable in most cases.
Anti-inflammatory drugs are used to treat the pain, and can help the lameness resolve sometimes if shoeing and training changes are made. Include Nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and other joint medications. The use of intramuscular glycosaminoglycans has been shown to decrease pain in horses with navicular disease, but this effect wanes after discontinuation of therapy. Oral glycosaminoglycans may have a similar effect.
Bisphosphonates can be useful in cases where bone remodeling is causing pain.
Gallium nitrate (GaN) has been hypothesized as a possible treatment for navicular disease, but its benefits have not been confirmed by formal clinical studies. One pilot study examined horses given gallium nitrate in their feed rations. While it was absorbed slowly, it did stay in the animals' system, providing a baseline dosage for future studies.
Webbed toes in humans are a purely cosmetic condition. This condition does not impair the ability to perform any activity, including walking, running, or swimming. Depending on the severity and structure of the webbing, there can be some minor consequences.
People with more severe webbed toes may have a slight disadvantage for activities that benefit from prehensile toes, due to the toes being unable to split or move laterally. Although not scientifically proven, some believe that this condition can possibly allow for a slight advantage, specifically, in athletics. Considering your big toe is a main source for balance, having your second and third toe webbed could virtually be seen as having two big toes. Thus, allowing for better balance in athletics such as running or dance.
Psychological stress may arise from the fear of negative reactions to this condition from people who do not have webbed toes, particularly in severe cases where the nails are stuck visibly close together. Many people with webbed toes can physically feel the toes touching under the fused skin, which can cause psychological discomfort. This is due to the nerves of each toe fully developing and independent muscles working. In other cases where the toes are partially webbed, the webbing holds the separate tips of the toes against one another and prevents the muscles from spreading the toes apart, causing the toes and sometimes nails to press together.
However a disadvantage would be a difficulty in wearing flip-flops or other such footwear in warm countries. People with webbed toes may be unable to wear Toe socks or Vibram FiveFingers shoes. Difficulty navigating rough terrain barefoot, such as rocks at a beach is also common. In some cases the toes grow at different lengths causing the toes to buckle or bend and many people with severe webbed toes experience cramping in these toes due to the muscles and ligaments being strained.
Treatment of cause: Due to the genetic cause, no treatment of the cause is possible.
Treatment of manifestations: routine treatment of ophthalmologic, cardiac, and neurologic findings; speech, occupational, and physical therapies as appropriate; specialized learning programs to meet individual needs; antiepileptic drugs or antipsychotic medications as needed.
Surveillance: routine pediatric care; routine developmental assessments; monitoring of specific identified medical issues.
Symbrachydactyly is a congenital abnormality, characterized by limb anomalies consisting of brachydactyly, cutaneous syndactyly and global hypoplasia of the hand or foot. In many cases, bones will be missing from the fingers and some fingers or toes may be missing altogether. The ends of the hand may have "nubbins"—small stumps where the finger would have developed, which may have tiny residual nails.
Symbrachydactyly has been reported to appear without other combined limb anomalies and usually in one arm in 1 in 30,000 births to 1 in 40,000 births.
The cause of symbrachydactyly is unknown. One possible cause might be an interruption of the blood supply to the developing arm at four to six weeks of pregnancy. There is no link to anything the mother did or did not do during pregnancy. There is also no increased risk of having another child with the same condition or that the child will pass the condition on to his or her children.
In most cases, children born with symbrachydactyly are able to adapt to their physical limitations and experience a fully functional life with no treatment. Most children with this condition can use their hands well enough to do all the usual things children do. Possible treatment includes surgery or a routine of regularly stretching the fingers.
Therapy can help developmental delays, as well as physiotherapy for the low muscle tone. Exercise and healthy eating can reduce weight gain. Treatments are available for seizures, eczema, asthma, infections, and certain bodily ailments.
Asymptomatic anatomical variations in feet generally do not need treatment.
Conservative treatment for foot pain with Morton's toe may involve exercises or placing a flexible pad under the first toe and metatarsal; an early version of the latter treatment was once patented by Dudley Joy Morton. Restoring the Morton’s toe to normal function with proprioceptive orthotics can help alleviate numerous problems of the feet such as metatarsalgia, hammer toes, bunions, Morton's neuroma, plantar fasciitis, and general fatigue of the feet. Rare cases of disabling pain are sometimes treated surgically.
Palmar digital neurectomy (or "nerving" or "denerving") is not without adverse side effects and should therefore be used as a last resort. In this procedure, the palmar digital nerves are severed, so the horse loses sensation in the back of the foot. This procedure should only be performed if it will eliminate the lameness associated with navicular syndrome, and only after all other options have been explored. The procedure is usually performed on both front feet. Complications can include infection of the wound, continuation of the lameness (if the nerves regrow or if small branches of the nerves are not removed), neuromas, and rupture of the deep digital flexor tendon. After the neurectomy, if the horse becomes injured in the area the injury may go undetected for a long period of time, which risks the animal's health. Due to this, the feet should be cleaned and inspected regularly. Neurectomy tends to lower the market value of a horse, and may even make the horse ineligible for competition. Neurectomy is controversial. The most common misconception about "nerving" a horse is that it will permanently solve the lameness/pain issue. In fact, though the time periods vary based on the individual horse and surgical method utilized, these nerves often regenerate and return sensation to the afflicted region within two to three years.
In navicular suspensory desmotomy, the ligaments supporting the navicular bone are severed. This makes the navicular bone more mobile, and thus reduces the tension of the other ligaments. It is successful about half of the time.
Children with Pfeiffer syndrome types 2 and 3 "have a higher risk for neurodevelopmental disorders and a reduced life expectancy" than children with Pfeiffer syndrome type 1, but if treated, favorable outcomes are possible. In severe cases, respiratory and neurological complications often lead to early death.