Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment for both pregnant and non-pregnant women is usually with metronidazole, by mouth once. Caution should be used in pregnancy, especially in the first trimester. Sexual partners, even if they have no symptoms, should also be treated.
For 95-97% of cases, infection is resolved after one dose of metronidazole. Studies suggest that 4-5% of trichomonas cases are resistant to metronidazole, which may account for some “repeat” cases. Without treatment, trichomoniasis can persist for months to years in women, and is thought to improve without treatment in men. Women living with HIV infection have better cure rates if treated for 7 days rather than with one dose.
Topical treatments are less effective than oral antibiotics due to Skene's gland and other genitourinary structures acting as a reservoir.
Evidence from a randomized controlled trials for screening pregnant women who do not have symptoms for infection with trichomoniasis and treating women who test positive for the infection have not consistently shown a reduced risk of preterm birth. Further studies are needed to verify this result and determine the best method of screening. In the US, screening of pregnant women without any symptoms is only recommended in those with HIV as trichomonas infection is associated with increased risk of transmitting HIV to the fetus.
In the case of rape, the person can be treated prophylacticly with antibiotics.
An option for treating partners of patients (index cases) diagnosed with chlamydia or gonorrhea is patient-delivered partner therapy, which is the clinical practice of treating the sex partners of index cases by providing prescriptions or medications to the patient to take to his/her partner without the health care provider first examining the partner.
As of 2010, injectable ceftriaxone is one of the few effective antibiotics. This is typically given in combination with either azithromycin or doxycycline. As of 2015 and 2016 the CDC and WHO only recommends both ceftriaxone and azithromycin. Because of increasing rates of antibiotic resistance local susceptibility patterns must be taken into account when deciding on treatment.
It is recommended that sexual partners be tested and potentially treated. One option for treating sexual partners of people infected is patient-delivered partner therapy (PDPT), which involves providing prescriptions or medications to the person to take to his/her partner without the health care provider's first examining him/her.
The United States' Centers for Disease Control and Prevention (CDC) currently recommend that individuals who have been diagnosed and treated for gonorrhea avoid sexual contact with others until at least one week past the final day of treatment in order to prevent the spread of the bacterium.
Treatment is typically with the antibiotics metronidazole or clindamycin. They can be either given by mouth or applied inside the vagina. About 10% to 15% of people, however, do not improve with the first course of antibiotics and recurrence rates of up to 80% have been documented. Recurrence rates are increased with sexual activity with the same pre-/posttreatment partner and inconsistent condom use although estrogen-containing contraceptives decrease recurrence. When clindamycin is given to pregnant women symptomatic with BV before 22 weeks of gestation the risk of pre-term birth before 37 weeks of gestation is lower.
Other antibiotics that may work include macrolides, lincosamides, nitroimidazoles, and penicillins.
Bacterial vaginosis is not considered a sexually transmitted infection, and treatment of a male sexual partner of a woman with bacterial vaginosis is not recommended.
Treatment can include topical steroids to diminish the inflammation. Antibiotics to diminish the proportion of aerobic bacteria is still a matter of debate. The use of local antibiotics, preferably local non-absorbed and broad spectrum, covering enteric gram-positive and gram-negative aerobes, can be an option. In some cases, systemic antibiotics can be helpful, such as amoxicillin/clavulanate or moxifloxacin. Vaginal rinsing with povidone iodine can provide relief of symptoms but does not provide long-term reduction of bacterial loads. Dequalinium chloride can also be an option for treatment.
A 2009 Cochrane review found tentative but insufficient evidence for probiotics as a treatment for BV. A 2014 review reached the same conclusion. A 2013 review found some evidence supporting the use of probiotics during pregnancy. The preferred probiotics for BV are those containing high doses of lactobacilli (around 10 ) given in the vagina. Intravaginal administration is preferred to taking them by mouth. Prolonged repetitive courses of treatment appear to be more promising than short courses.
Researchers had hoped that nonoxynol-9, a vaginal microbicide would help decrease STI risk. Trials, however, have found it ineffective and it may put women at a higher risk of HIV infection.
The cause of the infection determines the appropriate treatment. It may include oral or topical antibiotics and/or antifungal creams, antibacterial creams, or similar medications. A cream containing cortisone may also be used to relieve some of the irritation. If an allergic reaction is involved, an antihistamine may also be prescribed. For women who have irritation and inflammation caused by low levels of estrogen (postmenopausal), a topical estrogen cream might be prescribed.
The following are typical treatments for trichomoniasis, bacterial vaginosis, and yeast infections:
- Trichomoniasis: Single oral doses of either metronidazole, or tinidazole. "Sexual partner(s) should be treated simultaneously. Patients should be advised to avoid sexual intercourse for at least 1 week and until they and their partner(s) have completed treatment and follow-up."
- Bacterial vaginosis: The most commonly used antibiotics are metronidazole, available in both pill and gel form, and clindamycin available in both pill and cream form.
- Yeast infections: Local azole, in the form of ovula and cream. All agents appear to be equally effective. These anti-fungal medications, which are available in over the counter form, are generally used to treat yeast infections. Treatment may last anywhere between one, three, or seven days.
Antibiotics such as tetracyclines, rifampin, and the aminoglycosides streptomycin and gentamicin are effective against "Brucella" bacteria. However, the use of more than one antibiotic is needed for several weeks, because the bacteria incubate within cells.
Surveillance using serological tests, as well as tests on milk like the milk ring test, can be used for screening and play an important role in campaigns to eliminate the disease. Also, individual animal testing both for trade and for disease-control purposes is practiced. In endemic areas, vaccination is often used to reduce the incidence of infection. An animal vaccine is available that uses modified live bacteria. The World Organisation for Animal Health "Manual of Diagnostic Test and Vaccines for Terrestrial Animals" provides detailed guidance on the production of vaccines. As the disease is closer to being eliminated, a test and stamping out program is required to completely eliminate it.
The gold standard treatment for adults is daily intramuscular injections of streptomycin 1 g for 14 days and oral doxycycline 100 mg twice daily for 45 days (concurrently). Gentamicin 5 mg/kg by intramuscular injection once daily for seven days is an acceptable substitute when streptomycin is not available or contraindicated. Another widely used regimen is doxycycline plus rifampin twice daily for at least six weeks. This regimen has the advantage of oral administration. A triple therapy of doxycycline, with rifampin and co-trimoxazole, has been used successfully to treat neurobrucellosis.
Doxycycline is able to cross the blood–brain barrier, but requires the addition of two other drugs to prevent relapse. Ciprofloxacin and co-trimoxazole therapy is associated with an unacceptably high rate of relapse. In brucellic endocarditis, surgery is required for an optimal outcome. Even with optimal antibrucellic therapy, relapses still occur in 5 to 10% of patients with Malta fever.
The main way of preventing brucellosis is by using fastidious hygiene in producing raw milk products, or by pasteurizing all milk that is to be ingested by human beings, either in its unaltered form or as a derivate, such as cheese.
Treatment usually involves a prescription of doxycycline (a normal dose would be 100 mg every 12 hours for adults) or a similar class of antibiotics. Oxytetracycline and imidocarb have also been shown to be effective. Supportive therapy such as blood products and fluids may be necessary.
The mortality of the disease in 1909, as recorded in the British Army and Navy stationed in Malta, was 2%. The most frequent cause of death was endocarditis. Recent advances in antibiotics and surgery have been successful in preventing death due to endocarditis. Prevention of human brucellosis can be achieved by eradication of the disease in animals by vaccination and other veterinary control methods such as testing herds/flocks and slaughtering animals when infection is present. Currently, no effective vaccine is available for humans. Boiling milk before consumption, or before using it to produce other dairy products, is protective against transmission via ingestion. Changing traditional food habits of eating raw meat, liver, or bone marrow is necessary, but difficult to implement. Patients who have had brucellosis should probably be excluded indefinitely from donating blood or organs. Exposure of diagnostic laboratory personnel to "Brucella" organisms remains a problem in both endemic settings and when brucellosis is unknowingly imported by a patient. After appropriate risk assessment, staff with significant exposure should be offered postexposure prophylaxis and followed up serologically for six months. Recently published experience confirms that prolonged and frequent serological follow-up consumes significant resources without yielding much information, and is burdensome for the affected staff, who often fail to comply. The side effects of the usual recommended regimen of rifampicin and doxycycline for three weeks also reduce treatment adherence. As no evidence shows treatment with two drugs is superior to monotherapy, British guidelines now recommend doxycycline alone for three weeks and a less onerous follow-up protocol.
Vaccines against anaplasmosis are available. Carrier animals should be eliminated from flocks. Tick control may also be useful although it can be difficult to implement.
Shade, insect repellent-impregnated ear tags, and lower stocking rates may help prevent IBK. Early identification of the disease also helps prevent spread throughout the herd. Treatment is with early systemic use of a long-acting antibiotic such as tetracycline or florfenicol. Subconjunctival injections with procaine penicillin or other antibiotics are also effective, providing a "bubble" of antibiotic which releases into the eye slowly over several days.
Anti-inflammatory therapy can help shorten recovery times, but topical corticosteroids should be used with care if corneal ulcers are present.
"M. bovis" uses several different serotyped fimbriae as virulence factors, consequently pharmaceutical companies have exploited this to create vaccines. However, currently available vaccines are not reliable.
Because "B. suis" is facultative and intracellular, and is able to adapt to environmental conditions in the macrophage, treatment failure and relapse rates are high. The only effective way to control and eradicate zoonosis is by vaccination of all susceptible hosts and elmination of infected animals. The "Brucella abortus" (rough LPS "Brucella") vaccine, developed for bovine brucellosis and licensed by the USDA Animal Plant Health Inspection Service, has shown protection for some swine and is also effective against "B. suis" infection, but currently no approved vaccine for swine brucellosis is available.
Cattle infested with bovine pediculosis are generally treated chemically, by drugs like ivermectin and cypermethrin.
GBS is also an important infectious agent able to cause invasive infections in adults. Serious life-threatening invasive GBS infections are increasingly recognized in the elderly and in individuals compromised by underlying diseases such as diabetes, cirrhosis and cancer. GBS infections in adults include urinary tract infection, skin and soft-tissue infection (skin and skin structure infection) bacteremia without focus, osteomyelitis, meningitis and endocarditis.
GBS infection in adults can be serious, and mortality is higher among adults than among neonates.
In general, penicillin is the antibiotic of choice for treatment of GBS infections. Erythromycin or clindamycin should not be used for treatment in penicillin-allergic patients unless susceptibility of the infecting GBS isolate to these agents is documented. Gentamicin plus penicillin (for antibiotic synergy) in patients with life-threatening GBS infections may be used.
Treatment of asymptomatic carriers should be considered if parasites are still detected after 3 months. In mild-to-moderate babesiosis, the treatment of choice is a combination of atovaquone and azithromycin. This regimen is preferred to clindamycin and quinine because side effects are fewer. The standard course is 7 to 10 days, but this is extended to at least 6 weeks in people with relapsing disease. Even mild cases are recommended to be treated to decrease the chance of inadvertently transmitting the infection by donating blood. In life-threatening cases, exchange transfusion is performed. In this procedure, the infected red blood cells are removed and replaced with uninfected ones.
Imizol is a drug used for treatment of babesiosis in dogs.
Extracts of the poisonous, bulbous plant "Boophone disticha" are used in the folk medicine of South Africa to treat equine babesiosis. "B. disticha" is a member of the daffodil family Amaryllidaceae and has also been used in preparations employed as arrow poisons, hallucinogens, and in embalming. The plant is rich in alkaloids, some of which display an action similar to that of scopolamine.
Lesions of paravaccinia virus will clear up with little to no scaring after 4 to 8 weeks. An antibiotic may be prescribed by a physician to help prevent bacterial infection of the lesion area. In rare cases, surgical removal of the lesions can be done to help increase rate of healing, and help minimize risk of bacterial or fungal infection. Upon healing, no long term side effects have been reported.
Currently, the only reliable way to prevent GBS-EOD is intrapartum antibiotic prophylaxis (IAP) - administration of antibiotics during delivery. Intravenous penicillin or ampicillin given at the onset of labour and then again every four hours until delivery to GBS colonized women have been proven to be very effective at preventing vertical transmission of GBS from mother to baby and GBS-EOD
(penicillin G, 5 million units IV initial dose, then 2.5–3.0 million units every 4 hours until delivery or ampicillin, 2 g IV initial dose, then 1 g IV every 4 hours until delivery).
Penicillin-allergic women without a history of anaphylaxis (angioedema, respiratory distress, or urticaria) following administration of a penicillin or a cephalosporin (low risk of anaphylaxis) could receive cefazolin (2 g IV initial dose, then 1 g IV every 8 hours until delivery) instead of penicillin or ampicillin. Clindamycin (900 mg IV every 8 hours until delivery), and vancomycin (1 g IV every 12 hours until delivery) are used to prevent GBS-EOD in infants born to penicillin-allergic mothers. Erythromycin is not recommended under any circumstances today.
Antibiotic susceptibility testing of GBS isolates is crucial for appropriate antibiotic selection for IAP in penicillin-allergic women, because resistance to clindamycin, the most common agent used (in penicillin-allergic women), is increasing among GBS isolates. Appropriate methodologies for testing are important, because resistance to clyndamicin (antimicrobial resistance) can occur in some GBS strains that appear susceptible (antibiotic sensitivity) in certain susceptibility tests.
If appropriate IAP in GBS colonized women starts at least 2 hours before the delivery, the risk of neonatal infection is also somehow reduced.
True penicillin allergy is rare with an estimated frequency of anaphylaxis of one to five episodes per 10,000 cases of penicillin therapy. Penicillin administered to a woman with no history of β-lactam allergy has a risk of anaphylaxis of 0.04 to 4 per 100,000. Maternal anaphylaxis associated with GBS IAP occurs, but any morbidity associated with anaphylaxis is offset greatly by reductions in the incidence of GBS-EOD.
Home births are becoming increasingly popular in the UK. Recommendations for preventing GBS infections in newborns are the same for home births as for hospital births. Around 25% of women having home births probably carry GBS in their vaginas at delivery without knowing, and it could be difficult to follow correctly the recommendations of IAP and to deal with the risk of a severe allergic reaction to the antibiotics outside of a hospital setting.
IAPs have been considered to be associated with the emergence of resistant bacterial strains and with an increase in the incidence of early-onset infections caused by other pathogens, mainly Gram-negative bacteria such as "Escherichia coli". Nevertheless, most studies have not found an increased rate of non-GBS early-onset sepsis related to the widespread use of IAP.
Other strategies to prevent GBS-EOD have been studied, and chlorhexidine intrapartum vaginal cleansing has been proposed to help preventing GBS-EOD, nevertheless no evidence has been shown for the effectiveness of this approach.
In the 15th century, topical mercury treatment was used to treat pediculosis.
The recommended treatment of new-onset pulmonary tuberculosis, as of 2010, is six months of a combination of antibiotics containing rifampicin, isoniazid, pyrazinamide, and ethambutol for the first two months, and only rifampicin and isoniazid for the last four months. Where resistance to isoniazid is high, ethambutol may be added for the last four months as an alternative.
A goal of community base efforts is to eliminate microfilariae from the blood of infected individuals in order to prevent transmission to the mosquito. This is primarily accomplished through the use of drugs. The treatment for "B. malayi" infection is the same as for bancroftian filariasis. Diethylcarbamazine (DEC) has been used in mass treatment programs in the form of DEC-medicated salt, as an effective microfilaricidal drug in several locations, including India. While DEC tends to cause adverse reactions like immediate fever and weakness, it is not known to cause any long-term adverse drug effects. DEC has been shown to kill both adult worms and microfilariae. In Malaysia, DEC dosages (6 mg/kg weekly for 6 weeks; 6 mg/kg daily for 9 days) reduced microfilariae by 80% for 18–24 months after treatment in the absence of mosquito control. Microfilariae numbers slowly return many months after treatment, thus requiring multiple drug doses over time in order to achieve long-term control. However, it is not known how many years of mass drug administration is required to eliminate transmission. But currently, there have been no confirmed cases of DEC resistance.
Single doses of two drugs (albendazole-DEC and albendazole-ivermectin) have been shown to remove 99% of microfilariae for a year after treatment and help to improve elephantiasis during early stages of the disease. Ivermectin does not appear to kill adult worms but serves as a less toxic microfilaricide.
Since the discovery of the importance of "Wolbachia" bacteria in the life cycle of "B. malayi" and other nematodes, novel drug efforts have targeted the endobacterium. Tetracyclines, rifampicin, and chloramphenicol have been effective in vitro by interfering with larvae molting and microfilariae development. Tetracyclines have been shown to cause reproductive and embryogenesis abnormalities in the adult worms, resulting in worm sterility. Clinical trials have demonstrated the successful reduction of "Wolbachia" and microfilariae in onchocerciasis and "W. bancrofti" infected patients. These antibiotics, while acting through a slightly more indirect route, are promising antifilarial drugs.
If tuberculosis recurs, testing to determine which antibiotics it is sensitive to is important before determining treatment. If multiple drug-resistant TB (MDR-TB) is detected, treatment with at least four effective antibiotics for 18 to 24 months is recommended.