Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Shade, insect repellent-impregnated ear tags, and lower stocking rates may help prevent IBK. Early identification of the disease also helps prevent spread throughout the herd. Treatment is with early systemic use of a long-acting antibiotic such as tetracycline or florfenicol. Subconjunctival injections with procaine penicillin or other antibiotics are also effective, providing a "bubble" of antibiotic which releases into the eye slowly over several days.
Anti-inflammatory therapy can help shorten recovery times, but topical corticosteroids should be used with care if corneal ulcers are present.
"M. bovis" uses several different serotyped fimbriae as virulence factors, consequently pharmaceutical companies have exploited this to create vaccines. However, currently available vaccines are not reliable.
Antibiotics such as tetracyclines, rifampin, and the aminoglycosides streptomycin and gentamicin are effective against "Brucella" bacteria. However, the use of more than one antibiotic is needed for several weeks, because the bacteria incubate within cells.
Surveillance using serological tests, as well as tests on milk like the milk ring test, can be used for screening and play an important role in campaigns to eliminate the disease. Also, individual animal testing both for trade and for disease-control purposes is practiced. In endemic areas, vaccination is often used to reduce the incidence of infection. An animal vaccine is available that uses modified live bacteria. The World Organisation for Animal Health "Manual of Diagnostic Test and Vaccines for Terrestrial Animals" provides detailed guidance on the production of vaccines. As the disease is closer to being eliminated, a test and stamping out program is required to completely eliminate it.
The gold standard treatment for adults is daily intramuscular injections of streptomycin 1 g for 14 days and oral doxycycline 100 mg twice daily for 45 days (concurrently). Gentamicin 5 mg/kg by intramuscular injection once daily for seven days is an acceptable substitute when streptomycin is not available or contraindicated. Another widely used regimen is doxycycline plus rifampin twice daily for at least six weeks. This regimen has the advantage of oral administration. A triple therapy of doxycycline, with rifampin and co-trimoxazole, has been used successfully to treat neurobrucellosis.
Doxycycline is able to cross the blood–brain barrier, but requires the addition of two other drugs to prevent relapse. Ciprofloxacin and co-trimoxazole therapy is associated with an unacceptably high rate of relapse. In brucellic endocarditis, surgery is required for an optimal outcome. Even with optimal antibrucellic therapy, relapses still occur in 5 to 10% of patients with Malta fever.
The main way of preventing brucellosis is by using fastidious hygiene in producing raw milk products, or by pasteurizing all milk that is to be ingested by human beings, either in its unaltered form or as a derivate, such as cheese.
Initial treatment in adults often involves simply pulling back the foreskin and cleaning the penis.
Vaccinations exist for several biological BRD precursors, but the multitude of possible precursors complicates the process of choosing a vaccine regime. Additionally, vaccines are not completely effective in stopping the disease, but are merely helpful in mitigation. Many of the problems with vaccine effectiveness rest with improper use, such as failing to time vaccine doses appropriately, or not administering them before shipping.
Vaccines are available for a number of viral/bacterial agents, including IBR, PI3, BVD, BRSV, Pasteurella, and "Haemophilus somnus". Many of these vaccines can be given simultaneously, because of their similar dosing schedule. For example, IBR, PI3, BVD, and BRSV vaccines are often sold in combination with each other.
Treatment usually involves a prescription of doxycycline (a normal dose would be 100 mg every 12 hours for adults) or a similar class of antibiotics. Oxytetracycline and imidocarb have also been shown to be effective. Supportive therapy such as blood products and fluids may be necessary.
Coopers Animal Health , a division of Schering-Plough, has released a new vaccine "Piliguard" in Australia. The vaccine contains three strains of "Morexella bovis" (SAH38, FLA 64, EPP 63) pilli antigen. This stimulate antibody production against the bacterial pilli to prevent their attachment and invasion of the conjuntiva. The company claims the vaccine reduces the incidence and severity of the disease in an individual animal which directly reduces animal suffering and production loss on top of limiting the spread of disease through the herd. This, in turn, reduces the amount of antibioitcs and fly repellent needed during high-risk seasons. The vaccine is marketed in multidose vials and has an adjuvant to create a long-term subcutaneous depot. This means no booster shot is necessary, but severe local reaction can be seen in people who accidentally inoculate themselves. Calves as young as one week old can be treated and no meat, milk, or export slaughter withdrawal is needed.
These terms can apply to any species of mammal. Amongst domestic animals, metritis and endometritis are most common in cattle after parturition, and the diseases are often called postpartum metritis or postpartum endometritis. These diseases in cattle are caused by bacteria and occasionally viruses. The most common bacteria that cause postpartum metritis and endometritis in cattle are "Escherichia coli", "Trueperella" (previously "Arcanobacterium") "pyogenes" and anaerobic bacteria such as "Prevotella" species and "Fusobacterium necrophorum". The virus most consistently associated with postpartum uterine disease in cattle is Bovine Herpesvirus 4 (BoHV-4). In addition, "Several specific diseases are associated with metritis or endometritis. These include brucellosis, leptospirosis, campylobacteriosis, and trichomoniasis"
In cattle, bacterial infection of the uterus affects almost all animals after parturition. Of course this doesn't mean they will get disease. In fact beef cattle rarely have disease unless they have a predisposing factor such as retained placenta or difficult parturition. However, uterine disease is common in dairy cattle - particularly high-milk-yield cows such as Holstein-Friesian cows.
Contagious equine metritis is a sexually transmitted infection in horses, recognized since 1977.
In 2014 a study reported about the first successful vaccination trials in cattle. The infection rate declined significantly.Vinícius Silva Machado, Marcela Luccas de Souza Bicalho u. a.: "Subcutaneous Immunization with Inactivated Bacterial Components and Purified Protein of Escherichia coli, Fusobacterium necrophorum and Trueperella pyogenes Prevents Puerperal Metritis in Holstein Dairy Cows." In: "PLoS ONE." 9, 2014, S. e91734, .
Metritis is inflammation of the wall of the uterus, whereas endometritis is inflammation of the functional lining of the uterus, called the endometrium The term pelvic inflammatory disease (PID) is often used for metritis.
In the absence of vaccination (often because calves are bought unvaccinated), antibiotics can help to stop the bacterial factors of the disease. The Virginia Cooperative Extension recommends Micotil, Nuflor, and Baytril 100 as newer antibiotics that do not need daily dosing, but also notes that Naxcel, Excenel, and Adspec are effective as well.
The mortality of the disease in 1909, as recorded in the British Army and Navy stationed in Malta, was 2%. The most frequent cause of death was endocarditis. Recent advances in antibiotics and surgery have been successful in preventing death due to endocarditis. Prevention of human brucellosis can be achieved by eradication of the disease in animals by vaccination and other veterinary control methods such as testing herds/flocks and slaughtering animals when infection is present. Currently, no effective vaccine is available for humans. Boiling milk before consumption, or before using it to produce other dairy products, is protective against transmission via ingestion. Changing traditional food habits of eating raw meat, liver, or bone marrow is necessary, but difficult to implement. Patients who have had brucellosis should probably be excluded indefinitely from donating blood or organs. Exposure of diagnostic laboratory personnel to "Brucella" organisms remains a problem in both endemic settings and when brucellosis is unknowingly imported by a patient. After appropriate risk assessment, staff with significant exposure should be offered postexposure prophylaxis and followed up serologically for six months. Recently published experience confirms that prolonged and frequent serological follow-up consumes significant resources without yielding much information, and is burdensome for the affected staff, who often fail to comply. The side effects of the usual recommended regimen of rifampicin and doxycycline for three weeks also reduce treatment adherence. As no evidence shows treatment with two drugs is superior to monotherapy, British guidelines now recommend doxycycline alone for three weeks and a less onerous follow-up protocol.
Because "B. suis" is facultative and intracellular, and is able to adapt to environmental conditions in the macrophage, treatment failure and relapse rates are high. The only effective way to control and eradicate zoonosis is by vaccination of all susceptible hosts and elmination of infected animals. The "Brucella abortus" (rough LPS "Brucella") vaccine, developed for bovine brucellosis and licensed by the USDA Animal Plant Health Inspection Service, has shown protection for some swine and is also effective against "B. suis" infection, but currently no approved vaccine for swine brucellosis is available.
Vaccines against anaplasmosis are available. Carrier animals should be eliminated from flocks. Tick control may also be useful although it can be difficult to implement.
The need for a dairy-free diet should be reevaluated every six months by testing milk-containing products low on the "milk ladder", such as fully cooked, i.e., baked foods containing milk, in which the milk proteins have been denatured, and ending with fresh cheese and milk. Desensitization via oral immunotherapy holds some promise but is still being actively researched (see Research).
Treatment for accidental ingestion of milk products by allergic individuals varies depending on the sensitivity of the person. An antihistamine such as diphenhydramine (Benadryl) may be prescribed. Sometimes prednisone will be prescribed to prevent a possible late phase Type I hypersensitivity reaction. Severe allergic reactions (anaphalaxis) may require treatment with an epinephrine pen, i.e., an injection device designed to be used by a non-healthcare professional when emergency treatment is warranted. A second dose is needed in 16-35% of episodes.
Cattle infested with bovine pediculosis are generally treated chemically, by drugs like ivermectin and cypermethrin.
Treatment of asymptomatic carriers should be considered if parasites are still detected after 3 months. In mild-to-moderate babesiosis, the treatment of choice is a combination of atovaquone and azithromycin. This regimen is preferred to clindamycin and quinine because side effects are fewer. The standard course is 7 to 10 days, but this is extended to at least 6 weeks in people with relapsing disease. Even mild cases are recommended to be treated to decrease the chance of inadvertently transmitting the infection by donating blood. In life-threatening cases, exchange transfusion is performed. In this procedure, the infected red blood cells are removed and replaced with uninfected ones.
Imizol is a drug used for treatment of babesiosis in dogs.
Extracts of the poisonous, bulbous plant "Boophone disticha" are used in the folk medicine of South Africa to treat equine babesiosis. "B. disticha" is a member of the daffodil family Amaryllidaceae and has also been used in preparations employed as arrow poisons, hallucinogens, and in embalming. The plant is rich in alkaloids, some of which display an action similar to that of scopolamine.
Combination therapy—using medications of different classes together, each with a different mechanism of action—has been demonstrated to be a more efficacious approach to acne treatment than monotherapy. The use of topical benzoyl peroxide and antibiotics together has been shown to be more effective than antibiotics alone. Similarly, using a topical retinoid with an antibiotic clears acne lesions faster than the use of antibiotics alone. Frequently used combinations include the following: antibiotic and benzoyl peroxide, antibiotic and topical retinoid, or topical retinoid and benzoyl peroxide. The pairing of benzoyl peroxide with a retinoid is preferred over the combination of a topical antibiotic with a retinoid since both regimens are effective but benzoyl peroxide does not lead to antibiotic resistance.
In the 15th century, topical mercury treatment was used to treat pediculosis.
Antibiotics are frequently applied to the skin or taken orally to treat acne and are thought to work due to their antimicrobial activity against "P. acnes" and their ability to reduce inflammation. With the widespread use of antibiotics for acne and an increased frequency of antibiotic-resistant "P. acnes" worldwide, antibiotics are becoming less effective, especially macrolide antibiotics such as topical erythromycin. Commonly used antibiotics, either applied to the skin or taken orally, include clindamycin, erythromycin, metronidazole, sulfacetamide, and tetracyclines such as doxycycline and minocycline. When antibiotics are applied to the skin, they are typically used for mild to moderately severe acne. Antibiotics taken orally are generally considered to be more effective than topical antibiotics, and produce faster resolution of inflammatory acne lesions than topical applications. Topical and oral antibiotics are not recommended for use together.
Oral antibiotics are recommended for no longer than three months as antibiotic courses exceeding this duration are associated with the development of antibiotic resistance and show no clear benefit over shorter courses. Furthermore, if long-term oral antibiotics beyond three months are thought to be necessary, it is recommended that benzoyl peroxide and/or a retinoid be used at the same time to limit the risk of "P. acnes" developing antibiotic resistance. Dapsone is not a first-line topical antibiotic due to higher cost and lack of clear superiority over other antibiotics. Topical dapsone is not recommended for use with benzoyl peroxide due to yellow-orange skin discoloration with this combination.
Most people find it necessary to strictly avoid any item containing dairy ingredients. Milk from other species (goat, sheep...) should not be substituted for cow's milk, as milk proteins from other mammals are often cross-reactive. Beyond the obvious (anything with milk, cheese, cream, butter or yogurt in the name), food ingredient lists need to be examined:
- Ghee
- Some Margarine (!)
- Medical food beverages (Ensure, etc.)
- "Non-dairy" coffee creamer
- Eggnog
- Sherbet
- "Cream of..." soups
- Creamy pasta sauces
- Creamy salad dressings
- Nutella
- Simplesse
- Bread
- Baked goods
- Crackers
- Cereals
- Some Chewing gum (!)
- Some Hot dogs (!)
- Instant mashed potatoes
- Flavored potato chips
- Caramel and nougat candy
- casein (milk protein
- whey (milk protein)
- Lactalbumin (milk protein)
- lactoglobulin (milk protein)
- lactoferrin (milk protein)
Probiotic products have been tested, and some found to contain milk proteins which were not always indicated on the labels.
GBS is also an important infectious agent able to cause invasive infections in adults. Serious life-threatening invasive GBS infections are increasingly recognized in the elderly and in individuals compromised by underlying diseases such as diabetes, cirrhosis and cancer. GBS infections in adults include urinary tract infection, skin and soft-tissue infection (skin and skin structure infection) bacteremia without focus, osteomyelitis, meningitis and endocarditis.
GBS infection in adults can be serious, and mortality is higher among adults than among neonates.
In general, penicillin is the antibiotic of choice for treatment of GBS infections. Erythromycin or clindamycin should not be used for treatment in penicillin-allergic patients unless susceptibility of the infecting GBS isolate to these agents is documented. Gentamicin plus penicillin (for antibiotic synergy) in patients with life-threatening GBS infections may be used.
Lesions of paravaccinia virus will clear up with little to no scaring after 4 to 8 weeks. An antibiotic may be prescribed by a physician to help prevent bacterial infection of the lesion area. In rare cases, surgical removal of the lesions can be done to help increase rate of healing, and help minimize risk of bacterial or fungal infection. Upon healing, no long term side effects have been reported.
Diagnosis may include careful identification of the cause with the aid of a good patient history, swabs and cultures, and pathological examination of a biopsy.
Currently, the only reliable way to prevent GBS-EOD is intrapartum antibiotic prophylaxis (IAP) - administration of antibiotics during delivery. Intravenous penicillin or ampicillin given at the onset of labour and then again every four hours until delivery to GBS colonized women have been proven to be very effective at preventing vertical transmission of GBS from mother to baby and GBS-EOD
(penicillin G, 5 million units IV initial dose, then 2.5–3.0 million units every 4 hours until delivery or ampicillin, 2 g IV initial dose, then 1 g IV every 4 hours until delivery).
Penicillin-allergic women without a history of anaphylaxis (angioedema, respiratory distress, or urticaria) following administration of a penicillin or a cephalosporin (low risk of anaphylaxis) could receive cefazolin (2 g IV initial dose, then 1 g IV every 8 hours until delivery) instead of penicillin or ampicillin. Clindamycin (900 mg IV every 8 hours until delivery), and vancomycin (1 g IV every 12 hours until delivery) are used to prevent GBS-EOD in infants born to penicillin-allergic mothers. Erythromycin is not recommended under any circumstances today.
Antibiotic susceptibility testing of GBS isolates is crucial for appropriate antibiotic selection for IAP in penicillin-allergic women, because resistance to clindamycin, the most common agent used (in penicillin-allergic women), is increasing among GBS isolates. Appropriate methodologies for testing are important, because resistance to clyndamicin (antimicrobial resistance) can occur in some GBS strains that appear susceptible (antibiotic sensitivity) in certain susceptibility tests.
If appropriate IAP in GBS colonized women starts at least 2 hours before the delivery, the risk of neonatal infection is also somehow reduced.
True penicillin allergy is rare with an estimated frequency of anaphylaxis of one to five episodes per 10,000 cases of penicillin therapy. Penicillin administered to a woman with no history of β-lactam allergy has a risk of anaphylaxis of 0.04 to 4 per 100,000. Maternal anaphylaxis associated with GBS IAP occurs, but any morbidity associated with anaphylaxis is offset greatly by reductions in the incidence of GBS-EOD.
Home births are becoming increasingly popular in the UK. Recommendations for preventing GBS infections in newborns are the same for home births as for hospital births. Around 25% of women having home births probably carry GBS in their vaginas at delivery without knowing, and it could be difficult to follow correctly the recommendations of IAP and to deal with the risk of a severe allergic reaction to the antibiotics outside of a hospital setting.
IAPs have been considered to be associated with the emergence of resistant bacterial strains and with an increase in the incidence of early-onset infections caused by other pathogens, mainly Gram-negative bacteria such as "Escherichia coli". Nevertheless, most studies have not found an increased rate of non-GBS early-onset sepsis related to the widespread use of IAP.
Other strategies to prevent GBS-EOD have been studied, and chlorhexidine intrapartum vaginal cleansing has been proposed to help preventing GBS-EOD, nevertheless no evidence has been shown for the effectiveness of this approach.
Swine brucellosis is a zoonosis affecting pigs, caused by the bacterium "Brucella suis". The disease typically causes chronic inflammatory lesions in the reproductive organs of susceptible animals or orchitis, and may even affect joints and other organs. The most common symptom is abortion in pregnant susceptible sows at any stage of gestation. Other manifestations are temporary or permanent sterility, lameness, posterior paralysis, spondylitis, and abscess formation. It is transmitted mainly by ingestion of infected tissues or fluids, semen during breeding, and suckling infected animals.
Since brucellosis threatens the food supply and causes undulant fever, "Brucella suis" and other "Brucella" species ("B. melitensis, B. abortis, B. ovis, B. canis") are recognized as potential agricultural, civilian, and military bioterrorism agents.
Paratuberculosis or Johne's disease is a contagious, chronic and sometimes fatal infection that primarily affects the small intestine of ruminants. It is caused by the bacterium "Mycobacterium avium" subspecies "paratuberculosis". Infections normally affect ruminants (mammals that have four compartments of their stomachs, of which the rumen is one), but have also been seen in a variety of nonruminant species, including rabbits, foxes, and birds. Horses, dogs, and nonhuman primates have been infected experimentally. Paratuberculosis is found worldwide, with some states in Australia (where it is usually called bovine Johne's disease or BJD) as the only areas proven to be free of the disease.
Some sources define "paratuberculosis" by the lack of "Mycobacterium tuberculosis", rather than the presence of any specific infectious agent, leaving ambiguous the appropriateness of the term to describe Buruli ulcer or Lady Windermere syndrome.