Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment of lesions of digital dermatitis is done by topical application of agents to the affected skin. The skin should be cleaned and kept dry prior treatment. Topical oxytetracycline (OTC) is often referred as the most reliable treatment as cows treated with OTC have a good recovery rate. Bandaging the lesion is often undertaken but there is no evidence of any benefit and bandaging can provide the anaerobic environment which supports the spirochaetes.. Systemic antibiotics are not needed.
Control and prevention of digital dermatitis relies on prompt detection, isolation and treatment of affected cattle. Group hoof disinfection can be achieved via the passage of the cows through footbaths of antimicrobial solutions. Slurry build-up should be avoided since organic matter can impair the antimicrobial efficacy of the footbath solutions. Regular footbaths should be organised, using formalin, copper sulphate or a thymol-based disinfectant. While regular footbathing can help prevent hoof infections, occasional flare-up of active M2 lesions can happen.
The skin should be cleaned and kept dry, and topical antibiotics can be applied to the area. Systemic antibiotics are not needed.
Control relies on prompt detection, isolation and treatment of affected cattle. Footpaths should be kept as dry as possible and slurry build-up should be avoided. Regular footbaths should be organised, using formalin, copper sulphate or a thymol-based disinfectant. In 2013, a safer and alternative to chemicals for hoof baths called Thymox Technology was proven, through field testing, to kill the main bacteria causing digital dermatitis.
Initial treatment in adults often involves simply pulling back the foreskin and cleaning the penis.
Vaccinations exist for several biological BRD precursors, but the multitude of possible precursors complicates the process of choosing a vaccine regime. Additionally, vaccines are not completely effective in stopping the disease, but are merely helpful in mitigation. Many of the problems with vaccine effectiveness rest with improper use, such as failing to time vaccine doses appropriately, or not administering them before shipping.
Vaccines are available for a number of viral/bacterial agents, including IBR, PI3, BVD, BRSV, Pasteurella, and "Haemophilus somnus". Many of these vaccines can be given simultaneously, because of their similar dosing schedule. For example, IBR, PI3, BVD, and BRSV vaccines are often sold in combination with each other.
Digital dermatitis is a disease that causes lameness in cattle. It was first discovered in Italy in 1974 by Cheli and Mortellaro. This disease is caused by a mixture of different bacteria. Anaerobic bacteria, including spirochetes of the genus "Treponema", are found in the lesions associated with the infection. Digital dermatitis is different from foot rot in cattle and both conditions may occur concurrently.
Digital dermatitis primarily affects dairy cattle and has been known to lower the quantity of milk produced, but the quality of the milk is unaffected.
Evidence show that risk factors favouring digital dermatitis outbreaks include: poor hygiene and high humidity; introduction of infected animals; no hoof care for heifers and dry cows; high levels of chronically infected animals; insufficient or inadequate hoof trimming; soft hooves and unbalanced nutrition.
Radiation therapy has been used mostly for early stage disease, but is unproven. Evidence to support its use as of 2017, however, is poor; efforts to gather evidence are complicated due to a poor understanding of the how the condition develops over time. It has only been looked at in early disease.
Several alternate therapies such as vitamin E treatment, have been studied, although without control groups. Most doctors do not value those treatments. None of these treatments stops or cures the condition permanently.
Laser treatment (using red and infrared at low power) was informally discussed in 2013 at an International Dupuytren Society forum, as of which time little or no formal evaluation of the techniques had been completed.
Only anecdotal evidence supports other compounds such as vitamin E.
The medieval "Bald's Leechbook" recommended treating chilblains with a mix of eggs, wine, and fennel root.
A common tradition of Hispanic America recommends warm garlic on the chilblains.
Shade, insect repellent-impregnated ear tags, and lower stocking rates may help prevent IBK. Early identification of the disease also helps prevent spread throughout the herd. Treatment is with early systemic use of a long-acting antibiotic such as tetracycline or florfenicol. Subconjunctival injections with procaine penicillin or other antibiotics are also effective, providing a "bubble" of antibiotic which releases into the eye slowly over several days.
Anti-inflammatory therapy can help shorten recovery times, but topical corticosteroids should be used with care if corneal ulcers are present.
"M. bovis" uses several different serotyped fimbriae as virulence factors, consequently pharmaceutical companies have exploited this to create vaccines. However, currently available vaccines are not reliable.
Interdigital dermatitis in cattle is caused by the anaerobic bacterium "Dichelobacter nodosus". This is also the agent of footrot in sheep, but strains appear to be different and there is no cross-infection.
Interdigital dermatitis is different from footrot in cattle and both conditions may occur concurrently.
The condition most commonly occurs in farms with a high stocking density or where cattle traffic is high and is most prevalent in Winter.
In the absence of vaccination (often because calves are bought unvaccinated), antibiotics can help to stop the bacterial factors of the disease. The Virginia Cooperative Extension recommends Micotil, Nuflor, and Baytril 100 as newer antibiotics that do not need daily dosing, but also notes that Naxcel, Excenel, and Adspec are effective as well.
Lesions of paravaccinia virus will clear up with little to no scaring after 4 to 8 weeks. An antibiotic may be prescribed by a physician to help prevent bacterial infection of the lesion area. In rare cases, surgical removal of the lesions can be done to help increase rate of healing, and help minimize risk of bacterial or fungal infection. Upon healing, no long term side effects have been reported.
Subungual hematomas are treated by either releasing the pressure conservatively when tolerable or by drilling a hole through the nail into the hematoma (trephining), or by removing the entire nail. Trephining is generally accomplished by using a heated instrument to pass through the nail into the blood clot. Removal of the nail is typically done when the nail itself is disrupted, a large laceration requiring suturing is suspected, or a fracture of the tip of the finger occurs. Although general anesthesia is generally not required, a digital nerve block is recommended to be performed if the nail is to be removed.
Subungual hematomas typically heal without incident, though infection or disruption of the nail (onycholysis) may occur.
Chilblains — also known as pernio, chill burns and perniosis — is a medical condition that occurs when a predisposed individual is exposed to cold and humidity, causing tissue damage. It is often confused with frostbite and trench foot. Damage to capillary beds in the skin causes redness, itching, inflammation, and sometimes blisters. Chilblains can be reduced by keeping the feet and hands warm in cold weather, and avoiding extreme temperature changes. Chilblains can be idiopathic (spontaneous and unrelated to another disease), but may also be a manifestation of another serious medical condition that must be investigated. A history of chilblains suggests a connective tissue disease (such as lupus). In infants, chilblains together with severe neurologic disease and unexplained fevers occurs in Aicardi–Goutières syndrome, a rare inherited condition.
Disease progression may be slowed with immunosuppressives and other medications, and esophageal reflux, pulmonary hypertension and Raynaud phenomenon may benefit from symptomatic treatment. However, there is no cure for this disease as there is no cure for scleroderma in general.
Injection of the tendon sheath with a corticosteroid is effective over weeks to months in more than half of people.
When corticosteroid injection fails, the problem is predictably resolved by a relatively simple surgical procedure (usually outpatient, under local anesthesia). The surgeon will cut the sheath that is restricting the tendon.
One recent study in the Journal of Hand Surgery suggests that the most cost-effective treatment is two trials of corticosteroid injection, followed by open release of the first annular pulley. Choosing surgery immediately is the most expensive option and is often not necessary for resolution of symptoms. More recently, a randomized controlled trial comparing corticosteroid injection with needle release and open release of the A1 pulley reported that only 57% of patients responded to corticosteroid injection (defined as being free of triggering symptoms for greater than six months). This is compared to a percutaneous needle release (100% success rate) and open release (100% success rate). This is somewhat consistent with the most recent Cochrane Systematic Review of corticosteroid injection for trigger finger which found only two pseudo-randomized controlled trials for a total pooled success rate of only 37%. However, this systematic review has not been updated since 2009.
There is a theoretical greater risk of nerve damage associated with the percutaneous needle release as the technique is performed without seeing the A1 pulley.
Thread trigger finger release is an ultrasound guided minimally invasive procedure using a piece of dissecting thread to transect A1 pulley without incision.
Splinting, non-steroidal anti inflammatory drugs (NSAIDs), and corticosteroid injections are regarded as conservative first-line treatments for stenosing tenosynovitis. However, NSAIDs have been found to be ineffective as a monotherapy. Early treatment of trigger thumb has been associated with better treatment outcomes. Surgical treatment of trigger thumb can be complicated by injury to the digital nerves, scarring, tenderness, or a contracture of the joint. A significantly higher rate of symptom improvement has been observed when surgical management is paired with corticosteroid injections when compared to corticosteroid injections alone.
Occupational therapy is based on relieving the symptoms and reducing the inflammation. Overall cure rate, for dutifully applied non-operative treatment, is over 95% [citation needed]. Several modalities of treatment exists, depending on the chronicity and severity of the condition.
- Modification of hand activities
- Exercise & stretching
- Local heat
- Extension splinting during sleep (custom metacarpophalangeal joint (MCP joint) blocking splint, which has reported better patient's symptomatic relief and functionality and a distal interphalangeal (DIP) joint blocking splint)
Treatment consists of injection of methylprednisolone often combined with anesthetic (lidocaine) at the site of maximal inflammation or tenderness. The infiltration of the affected site can be performed blinded or sonographically guided, and often needs to be repeated 2 or three times to achieve remission. An irreducibly locked trigger, often associated with a flexion contracture of the PIP joint, should not be treated by injections.
- Transection of the fibrous annular pulley of the sheath
For symptoms that have persisted or recurred for more than 6 months and/or have been unresponsive to conservative treatment, surgical release of the pulley may be indicated. The main surgical approaches are percutaneous release and open release. The percutaneous approach, is preferred in some centers due to its reported shorter time of recuperation of motor function, less complications, and less painful. Complication of the surgical management include, persistent trigger finger, bowstringing, digital nerve injury, and continued triggering.
Of note, diabetes seems to be a poor prognostic indicator for nonoperative treatment and may develop stiffness after surgical release.
A variety of drugs may be prescribed based on the cause of the patient's urethritis. Some examples of medications based on causes include: azithromycin, doxycycline, erythromycin, levofloxacin, metronidazole, ofloxacin, or tinidazole.
Proper perineal hygiene should be stressed. This includes avoiding use of vaginal deodorant sprays and proper wiping after urination and bowel movements. Intercourse should be avoided until symptoms subside.
Diagnosis may include careful identification of the cause with the aid of a good patient history, swabs and cultures, and pathological examination of a biopsy.
Anti-inflammatories are always used when treating acute case of laminitis, and include Nonsteroidal anti-inflammatory medications (NSAIDS), DMSO, pentoxpfylline, and cryotherapy. For analgesia, NSAIDs are often the first line of defense. Phenylbutazone is commonly used for its strong effect and relatively low cost. Flunixin (Banamine), ketofen, and others are also used. Nonspecific NSAIDs such as suxibuzone, or COX-2-specific drugs, such as firocoxib and diclofenac, may be somewhat safer than phenylbutazone in preventing NSAID toxicity such as right dorsal colitis, gastric ulcers, and kidney damage. However, firocoxib provides less pain relief than phenylbutazone or flunixin. Care must be taken that pain is not totally eliminated, since this will encourage the horse to stand and move around, which increases mechanical separation of the laminae.
Pentafusion, or the administration of ketamine, lidocaine, morphine, detomidine, and acepromazine at a constant rate of infusion, may be of particular benefit to horses suffering from laminitis. Epidurals may also be used in hind-limb laminitis.
- Vasodilators
Vasodilators are often used with the goal of improving laminar blood flow. However, during the developmental phases of laminitis, vasodilation is contraindicated, either through hot water or vasodilatory drugs. Systemic acepromazine as a vasodilator with the fringe benefit of mild sedation which reduces the horse/pony's movements and thus reduces concussion on the hooves, may be beneficial after lamellar damage has occurred, although no effects on laminar blood flow with this medication have been shown. Nitroglycerine has also been applied topically in an attempt to increase blood flow, but this treatment does not appear to be an effective way to increase blood flow in the equine digit.
If a contracture is less than 30 degrees, it may not interfere with normal functioning. The common treatment is splinting and occupational therapy. Surgery is the last option for most cases as the result may not be satisfactory.
There are two types of surgery: open surgery which is mentioned above and percutaneous surgery. Unlike open surgery percutaneous surgery is done without exposing the anatomical structures beneath the skin. Research has shown that percutaneous surgery is a good alternative to open surgery. Percutaneous surgery is done with a needle which is inserted in the flexor sheath at the level of the A1 pulley. Before the needle insertion the thumb is placed in extension, whereas when the needle is already inserted the thumb will be put into semi-flexion, so that the needle can be moved and the palmar skin is movable. The A1 pulley will then be cut with the needle longitudinally and parallel to the fibers of the tendon of the flexor pollicis longus muscle. When the release with the needle is done according to the pivot maneuver the chances of incomplete release and damage to the digital nerve nearby will be increased. To prevent any postoperative hematoma and swelling, pressure should be applied for at least 10 minutes after the procedure. Percutaneous surgery has also been proven to be without residual deformities and recurrence after surgery. When the A1 pulley is too thick and long to be released at once, open surgery still can be a solution. The advantages over open surgery are that percutaneous surgery is simpler, more straightforward and shorter concerning the duration. It can also be done in every other examination room unlike the open surgery, which is done in an operation room. The risk nonetheless is that the digital nerve of the thumb nearby can be damaged.
Treatment usually involves a prescription of doxycycline (a normal dose would be 100 mg every 12 hours for adults) or a similar class of antibiotics. Oxytetracycline and imidocarb have also been shown to be effective. Supportive therapy such as blood products and fluids may be necessary.
Treatments range from recommendations for over-the-counter products to more invasive surgical procedures.
Among the most common outpatient advice given to patients with less severe disorders include a high-fiber diet, application of ointment, and increased water intake. More serious procedures include the removal of affected tissue, injection of botulinum toxin, or surgically opening the fistula tract in the sphincter muscle.
Surgical treatment should be considered when the patient has a trigger thumb bilaterally and when the patient has a severe trigger thumb. Severe is defined as when the thumb is locked so that the thumb cannot be flexed or extended either passively or actively. Surgical treatment should also be considered when observation and/or splint therapy hasn’t achieved sufficient results after 49 months. Unlike the surgical treatment given for adults, which is unambiguously a surgical release of the A1 pulley of the thumb, the optimum surgical treatment for infants has not yet been discerned. In case of infants, research has shown that only in 15% of the cases A1 pulley release alone is sufficient. In most of the cases there was an additional annular pulley structure distal to the A1 to be released resolving the triggering: the so-called Av pulley or variable pulley. Therefore infants and adults need to be treated differently as the main problem is different.