Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The goals of the treatment for bone metastases include pain control, prevention and treatment of fractures, maintenance of patient function, and local tumor control. Treatment options are determined by multiple factors, including performance status, life expectancy, impact on quality of life, and overall status of clinical disease.
Pain management
The World Health Organization's pain ladder was designed for the management of cancer-associated pain, and mainly involves various strength of opioids. Mild pain or breakthrough pain may be treated with nonsteroidal anti-inflammatory drugs.
Other treatments include bisphosphonates, corticosteroids, radiotherapy, and radionucleotides.
Percutaneous osteoplasty involves the use of bone cement to reduce pain and improve mobility. In palliative therapy, the main options are external radiation and radiopharmaceuticals. High-intensity focused ultrasound (HIFU) has CE approval for palliative care for bone metastasis, though treatments are still in investigatory phases as more information is needed to study effectiveness in order to obtain full approval in countries such as the USA.
Thermal ablation techniques are increasingly being used in the palliative treatment of painful metastatic bone disease. Although the majority of patients experience complete or partial relief of pain following external radiation therapy, the effect is not immediate and has been shown in some studies to be transient in more than half of patients. For patients who are not eligible or do not respond to traditional therapies ( i.e. radiation therapy, chemotherapy, palliative surgery, bisphosphonates or analgesic medications), thermal ablation techniques have been explored as alternatives for pain reduction. Several multi-center clinical trials studying the efficacy of radiofrequency ablation in the treatment of moderate to severe pain in patients with metastatic bone disease have shown significant decreases in patient reported pain after treatment. These studies are limited, however, to patients with one or two metastatic sites; pain from multiple tumors can be difficult to localize for directed therapy. More recently, cryoablation has also been explored as a potentially effective alternative as the area of destruction created by this technique can be monitored more effectively by CT than radiofrequency ablation, a potential advantage when treating tumors adjacent to critical structures.
Monthly injections of radium-223 chloride (as Xofigo, formerly called Alpharadin) have
been approved by the FDA in May 2013 for castration-resistant prostate cancer (CRPC) with bone metastases.
A Cochrane review of calcitonin for the treatment of metastatic bone pain indicated no benefit in reduction of bone pain, complications, or quality of life.
Some patients with metastatic breast cancer opt to try alternative therapies such as vitamin therapy, homeopathic treatments, a macrobiotic diet, chiropractic or acupuncture. There is no evidence that any of these therapies are effective; they may be harmful, either because patients pass up effective conventional therapies such as chemotherapy or anti-estrogen therapy in favor of alternative treatments, or because the treatments themselves are harmful (as in the case of apricot-pit therapy—which exposes the patient to cyanide—or in chiropractic, which can be dangerous to patients with cancer metastatic to the spinal bones or spinal cord. A macrobiotic diet is neither effective nor safe as it could hypothetically induce weight loss due to severe dietary restriction. There is limited evidence that acupuncture might relive pain in cancer patients, but data so far is insufficient to recommend its use outside of clinical trials.
There is free peer support and an online platform to interact with others going through various therapies, including Abraxane.
Treatment of metastatic breast cancer is currently an active area of research. Several medications are in development or in phase I/II trials. Typically new medications and treatments are first tested in metastatic cancer before trials in primary cancer are attempted.
Another area of research is finding combination treatments which provide higher efficacy with reduced toxicity and side effects.
Experimental medications:
- sorafenib a combined Tyrosine protein kinases inhibitor.
Treatment depends on the location of the disease and the aggressiveness of the tumors. Because chondrosarcomas are rare, they are treated at specialist hospitals with Sarcoma Centers.
Surgery is the main form of treatment for chondrosarcoma. Musculoskeletal tumor specialists or orthopedic oncologists are usually chosen to treat chondrosarcoma, unless it is located in the skull, spine, or chest cavity, in which case, a neurosurgeon or thoracic surgeon experienced with sarcomas is chosen. Often, a limb-sparing operation can be performed, but in some cases amputation is unavoidable. Amputation of the arm, leg, jaw, or half of the pelvis (called a hemipelvectomy) may be necessary in some cases.
There are two kinds of hemipelvectomy - internal and external.
- External hemipelvectomy - is removal of that half of the pelvis with the amputation of the leg. It is also called the hindquarter amputation.
- Internal hemipelvectomy - is removal of that half of the pelvis, but the leg is left intact.
Amputation at the hip is called hip disarticulation and amputees who have had this amputation are also called hip disartics.
Chemotherapy or traditional radiotherapy are not very effective for most chondrosarcomas, although proton therapy is showing promise with local tumor control at over 80%.
Complete surgical ablation is the most effective treatment, but sometimes this is difficult. Proton therapy radiation can be useful in awkward locations to make surgery more effective.
Recent studies have shown that induction of apoptosis in high-grade chondrosarcoma, both directly and by enhancement of response to chemotherapy and radiation, is a valid therapeutic strategy.
Chondroblastoma has not been known to spontaneously heal and the standard treatment is surgical curettage of the lesion with bone grafting. To prevent recurrence or complications it is important to excise the entire tumor following strict oncologic criteria. However, in skeletally immature patients intraoperative fluoroscopy may be helpful to avoid destruction of the epiphyseal plate. In patients who are near the end of skeletal growth, complete curettage of the growth plate is an option. In addition to curettage, electric or chemical cauterization (via phenol) can be used as well as cryotherapy and wide or marginal resection. Depending on the size of the subsequent defect, autograft or allograft bone grafts are the preferred filling materials. Other options include substituting polymethylmethacrylate (PMMA) or fat implantation in place of the bone graft. The work of Ramappa "et al" suggests that packing with PMMA may be a more optimal choice because the heat of polymerization of the cement is thought to kill any remaining lesion.
Both radiotherapy and chemotherapy are not commonly used. Radiotherapy has been implemented in chondroblastoma cases that are at increased risk of being more aggressive and are suspected of malignant transformation. Furthermore, radiofrequency ablation has been used, but is typically most successful for small chondroblastoma lesions (approximately 1.5 cm). Treatment with radiofrequency ablation is highly dependent on size and location due to the increased risk of larger, weight-bearing lesions being at an increased risk for articular collapse and recurrence.
Overall, the success and method of treatment is highly dependent upon the location and size of the chondroblastoma.
General treatment regimens have not changed much in the past 30 years, in part due to the lack of randomized clinical trials. Surgery is the treatment of choice if the tumor is determined to be resectable. Curettage is a commonly used technique. The situation is complicated in a patient with a pathological fracture. It may be best to immobilize the affected limb and wait for the fracture to heal before performing surgery.
Patients with tumors that are not amenable to surgery are treated with radiation therapy. However caution is employed since a majority of recurrent tumors with transformations to the malignant sarcoma phenotype have been in patients receiving radiotherapy for their primary benign lesion. Pharmacotherapy for GCTOB, includes bisphosphonates such as Zoledronate, which are thought to induce apoptosis in the MNGC fraction, preventing tumor-induced osteolysis. Indeed, "in vitro" studies have shown zolidronate to be effective in killing osteoclast-like cells. More recently, humanized monoclonal antibodies such as Denosumab targeting the RANK ligand have been employed in treatment of GCTOB in a phase II study. This is based on the notion that increased expression of RANK-ligands by stromal cells plays a role in tumor pathogenesis.
A complete radical, surgical, "en bloc" resection of the cancer, is the treatment of choice in osteosarcoma. Although about 90% of patients are able to have limb-salvage surgery, complications, particularly infection, prosthetic loosening and non-union, or local tumor recurrence may cause the need for further surgery or amputation.
Mifamurtide is used after a patient has had surgery to remove the tumor and together with chemotherapy to kill remaining cancer cells to reduce the risk of cancer recurrence. Also, the option to have rotationplasty after the tumor is taken out exists.
Patients with osteosarcoma are best managed by a medical oncologist and an orthopedic oncologist experienced in managing sarcomas. Current standard treatment is to use neoadjuvant chemotherapy (chemotherapy given before surgery) followed by surgical resection. The percentage of tumor cell necrosis (cell death) seen in the tumor after surgery gives an idea of the prognosis and also lets the oncologist know if the chemotherapy regimen should be altered after surgery.
Standard therapy is a combination of limb-salvage orthopedic surgery when possible (or amputation in some cases) and a combination of high-dose methotrexate with leucovorin rescue, intra-arterial cisplatin, adriamycin, ifosfamide with mesna, BCD (bleomycin, cyclophosphamide, dactinomycin), etoposide, and muramyl tripeptide. Rotationplasty may be used. Ifosfamide can be used as an adjuvant treatment if the necrosis rate is low.
Despite the success of chemotherapy for osteosarcoma, it has one of the lowest survival rates for pediatric cancer. The best reported 10-year survival rate is 92%; the protocol used is an aggressive intra-arterial regimen that individualizes therapy based on arteriographic response. Three-year event-free survival ranges from 50% to 75%, and five-year survival ranges from 60% to 85+% in some studies. Overall, 65–70% patients treated five years ago will be alive today. These survival rates are overall averages and vary greatly depending on the individual necrosis rate.
Filgrastim or pegfilgrastim help with white blood cell counts and neutrophil counts. Blood transfusions and epoetin alfa help with anemia. Computational analysis on a panel of Osteosarcoma cell lines identified new shared and specific therapeutic targets (proteomic and genetic) in Osteosarcoma, while phenotypes showed an increased role of tumor microenvironments.
Treatment for brain metastases is primarily palliative, with the goals of therapy being reduction of symptoms and prolongation of life. However, in some patients, particularly younger, healthier patients, aggressive therapy consisting of open craniotomy with maximal excision, chemotherapy, and radiosurgical intervention (Gamma Knife therapy) may be attempted.
Symptomatic care should be given to all patients with brain metastases, as they often cause severe, debilitating symptoms. Treatment consists mainly of:
- Corticosteroids – Corticosteroid therapy is essential for all patients with brain metastases, as it prevents development of cerebral edema, as well as treating other neurological symptoms such as headaches, cognitive dysfunction, and emesis. Dexamethasone is the corticosteroid of choice. Although neurological symptoms may improve within 24 to 72 hours of starting corticosteroids, cerebral edema may not improve for up to a week. In addition, patients may experience adverse side effects from these drugs, such as myopathy and opportunistic infections, which can be alleviated by decreasing the dose.
- Anticonvulsants – Anticonvulsants should be used for patients with brain metastases who experience seizures, as there is a risk of status epilepticus and death. Newer generation anticonvulsants including Lamotrigine and Topiramate are recommended due to their relatively limited side effects. It is not recommended to prophylactically give anti-seizure medications when a seizure has not yet been experienced by a patient with brain metastasis.
Treatment and survival is determined, to a great extent, by whether or not a cancer remains localized or spreads to other locations in the body. If the cancer metastasizes to other tissues or organs it usually dramatically increases a patient's likelihood of death. Some cancers—such as some forms of leukemia, a cancer of the blood, or malignancies in the brain—can kill without spreading at all.
Once a cancer has metastasized it may still be treated with radiosurgery, chemotherapy, radiation therapy, biological therapy, hormone therapy, surgery, or a combination of these interventions ("multimodal therapy"). The choice of treatment depends on a large number of factors, including the type of primary cancer, the size and location of the metastases, the patient's age and general health, and the types of treatments used previously. In patients diagnosed with CUP it is often still possible to treat the disease even when the primary tumor cannot be located.
Current treatments are rarely able to cure metastatic cancer though some tumors, such as testicular cancer and thyroid cancer, are usually curable.
Palliative care, care aimed at improving the quality of life of people with major illness, has been recommended as part of management programs for metastasis.
Induction chemotherapy is the treatment adapted for shrinking the tonsil tumor. It is given prior to other treatments, hence, the term induction. After the therapy is completed, the patient is asked to rest and is evaluated over a period of time. Then the patient is given chemo-radiation therapy (a combination of chemotherapy and radiation) to completely destroy the tumor cells.
Treatment consists of surgical excision (the extent of which ranges from tumor excision to limb amputation, depending on the tumor) and in almost all cases radiation. Radiation eliminates the need for limb amputation and there is level I evidence to show that it leads to equivalent rates of survival (Rosenberg et al. NCI Canada). Radiation may be delivered either pre-op or post-op depending on surgeon and multidisciplinary tumor board's recommendations. Radiation can be omitted for low grade, Stage I excised tumors with >1 cm margin (NCCN). Chemotherapy remains controversial in MFH.
The usual site of metastatic disease is the lungs, and metastases should be resected if possible. Unresectable or inoperable lung metastasis may be treated with stereotactic body radiation therapy (SBRT) with excellent local control. However, neither surgery nor SBRT will prevent emergence of additional metastasis elsewhere in the lung. Therefore, role of chemotherapy needs to be further explored to address systemic metastasis.
Early radio-sensitive tumors are treated by radiotherapy along with irradiation of cervical nodes. The radiation uses high-energy X-rays, electron beams, or radioactive isotopes to destroy cancer cells.
Amputation is the initial treatment, although this alone will not prevent metastasis. Chemotherapy combined with amputation improves the survival time, but most dogs still die within a year. Surgical techniques designed to save the leg (limb-sparing procedures) do not improve the prognosis.
Some current studies indicate osteoclast inhibitors such as alendronate and pamidronate may have beneficial effects on the quality of life by reducing osteolysis, thus reducing the degree of pain, as well as the risk of pathological fractures.
Various chemotherapy agents, including temozolomide, dacarbazine (also termed DTIC), immunotherapy (with interleukin-2 (IL-2) or interferon (IFN)), as well as local perfusion, are used by different centers. The overall success in metastatic melanoma is quite limited.
IL-2 (Proleukin) was the first new therapy approved (1990 Europe, 1992 USA) for the treatment of metastatic melanoma in 20 years. Studies have demonstrated that IL-2 offers the possibility of a complete and long-lasting remission in this disease, although only in a small percentage of patients. Intralesional IL-2 for in-transit metastases has a high complete response rate ranging from 40 to 100%.
By 2005 a number of new agents and novel approaches were under evaluation and showed promise.
In 2009 Clinical trial participation was considered the standard of care for metastatic melanoma.
Therapies for metastatic melanoma include biologic immunotherapy agents ipilimumab, pembrolizumab, and nivolumab; BRAF inhibitors, such as vemurafenib and dabrafenib; and a MEK inhibitor trametinib.
Ongoing research is looking at treatment by adoptive cell transfer. For this purpose, application of prestimulated or modified T cells or dendritic cells is possible.
The primary treatment is surgical. FIGO-cancer staging is done at the time of surgery which consists of peritoneal cytology, total hysterectomy, bilateral salpingo-oophorectomy, pelvic/para-aortic lymphadenectomy, and omentectomy. The tumor is aggressive and spreads quickly into the myometrium and the lymphatic system. Thus even in presumed early stages, lymphadenectomy and omentectomy should be included in the surgical approach. If the tumor has spread surgery is cytoreductive followed by radiation therapy and/or chemotherapy.
In a study to determine if adjuvant therapy should be used in patients with stage I UPSC who had undergone surgery, no increased survival was seen when radiation therapy was added versus observation, while the postsurgical treatment with chemotherapy may be beneficial but more data are needed.
A study of the usefulness of platinum-based chemotherapy as an adjuvant after surgery of stage I patients showed that patients with stage 1A who had no residual disease in the hysterectomy specimen had no recurrence regardless if chemotherapy was used or not, however, patients with stage 1A disease with residual disease in the hysterectomy specimen had no recurrence with platinum-based therapy, but those who had no such chemotherapy showed recurrence in 43%. Similarly, patients with stage 1B disease with chemotherapy had no recurrence, while those without chemotherapy had a high degree (77%) of recurrence.
Since Krukenberg tumors are secondary (metastatic), management might logically be driven by identifying and treating the primary cancer. The optimal treatment of Krukenberg tumors is unclear. The role of surgical resection has not been adequately addressed but if metastasis is limited to the ovaries, surgery may improve survival. The role of chemotherapy and/or radiotherapy is uncertain but may sometimes be beneficial.
Standard excision is still being done by most surgeons. Unfortunately, the recurrence rate is exceedingly high (up to 50%). This is due to the ill-defined visible surgical margin, and the facial location of the lesions (often forcing the surgeon to use a narrow surgical margin). The narrow surgical margin used, combined with the limitation of the standard "bread-loafing" technique of fixed tissue histology — result in a high "false negative" error rate, and frequent recurrences. Margin control (peripheral margins) is necessary to eliminate the false negative errors. If bread loafing is used, distances from sections should approach 0.1 mm to assure that the method approaches complete margin control.
Mohs surgery has been done with cure rate reported to be as low as 77%, and as high as 95% by another author. The "double scalpel" peripheral margin controlled excision method approximates the Mohs method in margin control, but requires a pathologist intimately familiar with the complexity of managing the vertical margin on the thin peripheral sections and staining methods.
Some melanocytic nevi, and melanoma-in-situ (lentigo maligna) have resolved with an experimental treatment, imiquimod (Aldara) topical cream, an immune enhancing agent. Some dermasurgeons are combining the 2 methods: surgically excising the cancer and then treating the area with Aldara cream postoperatively for three months.
Treatment for neurofibrosarcoma is similar to that of other cancers.
Surgery is an option; the removal of the tumor along with surrounding tissue may be vital for the patient’s survival. For discrete, localized tumors, surgery is often followed by radiation therapy of the excised area to reduce the chance of recurrence.
For patients suffering from neurofibrosarcomas in an extremity, if the tumor is vascularized (has its own blood supply) and has many nerves going through it and/or around it, amputation of the extremity may be necessary. Some surgeons argue that amputation should be the procedure of choice when possible, due to the increased chance of a better quality of life. Otherwise, surgeons may opt for a limb-saving treatment, by removing less of the surrounding tissue or part of the bone, which is replaced by a metal rod or grafts.
Radiation will also be used in conjunction with surgery, especially if the limb was not amputated. Radiation is rarely used as a sole treatment.
In some instances, the oncologist may choose chemotherapy drugs when treating a patient with neurofibrosarcoma, usually in conjunction with surgery. Patients taking chemotherapy must be prepared for the side effects that come with any other chemotherapy treatment, such as; hair loss, lethargy, weakness, etc.
Prognosis depends on how early the cancer is discovered and treated. For the least aggressive grade, about 90% of patients survive more than five years after diagnosis. People usually have a good survival rate at the low grade volume of cancer. For the most aggressive grade, only 10% of patients will survive one year.
Tumors may recur in the future. Follow up scans are extremely important for chondrosarcoma to make sure there has been no recurrence or metastasis, which usually occurs in the lungs.
Radiation therapy has become the preferred treatment. Its advantage is that it treats the entire nasal cavity together with the affected bone and has shown the greatest improvement in survival. The radiation therapy is typically delivered in 10-18 treatment sessions over the course of 2–4 weeks.
Radiation therapy has a multitude of accompanying side effects and should be recommended on a case-by-case basis. Dogs in which nose bleeds are observed have an average life expectancy of 88 days. In instances where nosebleeds are not seen, the prognosis is slightly less grim. On average, a dog with nasal cancer has a life expectancy of 95 days.
Treatment includes chemotherapy and, where practical, removal of the tumor with the affected organ, such as with a splenectomy. Splenectomy alone gives an average survival time of 1–3 months. The addition of chemotherapy, primarily comprising the drug doxorubicin, alone or in combination with other drugs, can increase the average survival time to 2-4 months, or more.
A more favorable outcome has been demonstrated in recent research conducted at University of Pennsylvania Veterinary School, in dogs treated with a compound derived from the Coriolus versicolor (commonly known as "Turkey Tail") mushroom:
“We were shocked,” Cimino Brown said. “Prior to this, the longest reported median survival time of dogs with hemangiosarcoma of the spleen that underwent no further treatment was 86 days. We had dogs that lived beyond a year with nothing other than this mushroom as treatment.”There were not statistically significant differences in survival between the three dosage groups, though the longest survival time was highest in the 100 mg group, at 199 days, eclipsing the previously reported survival time.
The results were so surprising, in fact, that the researchers asked Penn Vet pathologists to recheck the dogs’ tissue biopsies to make sure that the dogs really had the disease.
“They reread the samples and said, yes, it’s really hemangiosarcoma,” Cimino Brown said.
Chemotherapy is available for treating hemangiosarcoma, but many owners opt not to pursue that treatment once their dog is diagnosed.
“It doesn’t hugely increase survival, it’s expensive and it means a lot of back and forth to the vet for the dog,” Cimino Brown said. “So you have to figure in quality of life.”
This treatment does not always work. So, one should always be prepared for their pet to have the same survival time as a dog who is untreated.
Visceral hemangiosarcoma is usually fatal even with treatment, and usually within weeks or, at best, months. In the skin, it can be cured in most cases with complete surgical removal as long as there is not visceral involvement.
The specific treatment will depend on the tumor's type, location, size, and whether the cancer has spread to other organs. Surgical removal of the tumor remains the standard treatment of choice, but additional forms of therapy such as radiation therapy, chemotherapy, or immunotherapy exist.
When detected early, skin cancer in cats and dogs can often be treated successfully. In many cases, a biopsy can remove the whole tumor, as long as the healthy tissues removed from just outside the tumor area do not contain any cancer cells.
Complete radical surgical resection is the treatment of choice for EMECL, and in most cases, results in long-term survival or cure.
Aggressive surgical removal of the tumor and any enlarged sublumbar lymph nodes is essential for treatment of the tumor and associated hypercalcaemia. There is a high recurrence rate, although removal of lymph nodes with metastasis may improve survival time. Radiation therapy and chemotherapy may be helpful in treatment. Severe hypercalcaemia is treated with aggressive IV fluid therapy using sodium chloride and medications such as loop diuretics (increased kidney excretion of calcium) and aminobisphosphonates (decreased calcium release from bones). A poorer prognosis is associated with large tumor size (greater than 10 cm), hypercalcaemia, and distante metastasis. Early, incidental diagnosis of small anal sac masses may lead to a better prognosis with surgery alone (ongoing study).