Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Radiotherapy is the main choice of treatment for both SPB and extramedullary plasmacytoma, and local control rates of >80% can be achieved. This form of treatment can be used with curative intent because plasmacytoma is a radiosensitive tumor. Surgery is an option for extramedullary plasmacytoma, but for cosmetic reasons it is generally used when the lesion is not present within the head and neck region.
One of the major concerns is bone density and bone loss. Non-hormonal bisphosphonates increase bone strength and are available as once-a-week prescription pills. Metastron also known as strontium-89 chloride is an intravenous medication given to help with the pain and can be given in three month intervals. Generic Strontium Chloride Sr-89 Injection UPS, manufactured by Bio-Nucleonics Inc., it is the generic version of Metastron. Astra zantec is currently under review as to the benefits in bone cancer.
Chemotherapy and radiotherapy are effective in some tumors (such as Ewing's sarcoma) but less so in others (such as chondrosarcoma).
There is a variety of chemotherapy treatment protocols for bone tumors. The protocol with the best reported survival in children and adults is an intra-arterial protocol where tumor response is tracked by serial arteriogram. When tumor response has reached >90% necrosis surgical intervention is planned.
The one known curative treatment is allogeneic stem cell transplantation, but this approach involves significant risks.
Other treatment options are largely supportive, and do not alter the course of the disorder (with the possible exception of ruxolitinib, as discussed below). These options may include regular folic acid, allopurinol or blood transfusions. Dexamethasone, alpha-interferon and hydroxyurea (also known as hydroxycarbamide) may play a role.
Lenalidomide and thalidomide may be used in its treatment, though peripheral neuropathy is a common troublesome side-effect.
Frequent blood transfusions may also be required. If the patient is diabetic and is taking a sulfonylurea, this should be stopped periodically to rule out drug-induced thrombocytopenia.
Splenectomy is sometimes considered as a treatment option for patients with myelofibrosis in whom massive splenomegaly is contributing to anaemia because of hypersplenism, particularly if they have a heavy requirement for blood transfusions. However, splenectomy in the presence of massive splenomegaly is a high-risk procedure, with a mortality risk as high as 3% in some studies.
In November 2011, the FDA approved ruxolitinib (Jakafi) as a treatment for intermediate or high-risk myelofibrosis. Ruxolitinib serves as an inhibitor of JAK 1 and 2.
The "New England Journal of Medicine" (NEJM) published results from two Phase III studies of ruxolitinib. These data showed that the treatment significantly reduced spleen volume, improved symptoms of myelofibrosis, and was associated with improved overall survival compared to placebo.
The natural history of myeloma is of relapse following treatment. This may be attributed to tumor heterogeneity. Depending on the patient's condition, the prior treatment modalities used and the duration of remission, options for relapsed disease include re-treatment with the original agent, use of other agents (such as melphalan, cyclophosphamide, thalidomide or dexamethasone, alone or in combination), and a second autologous stem cell transplant.
Later in the course of the disease, "treatment resistance" occurs. This may be a reversible effect, and some new treatment modalities may re-sensitize the tumor to standard therapy. For patients with "relapsed disease", bortezomib is a recent addition to the therapeutic arsenal, especially as second line therapy, since 2005. Bortezomib is a proteasome inhibitor. Also, lenalidomide (Revlimid), a less toxic thalidomide analog, is showing promise for treating myeloma. The newly approved thalidomide derivative pomalidomide (Pomalyst in the U.S.) may be used for relapsed and refractory multiple myeloma.
In the 21st century, more patients have survived longer, as a result of stem cell transplant (with their own or a donor's) and treatments combining bortezomib (Velcade), dexamethasone and melphalan or cyclophosphamide. This seems to maintain the monoclonal peak at a reasonable level. Survival expectancy has risen. New treatments are under development.
Kidney failure in multiple myeloma can be acute (reversible) or chronic (irreversible). Acute kidney failure typically resolves when the calcium and paraprotein levels are brought under control. Treatment of chronic kidney failure is dependent on the type of kidney failure and may involve dialysis.
Several newer options are approved for the management of advanced disease:
- ixazomib — an orally available proteasome inhibitor indicated in combination with lenalidomide and dexamethasone in people who have received at least one prior therapy;
- panobinostat — an orally available histone deacetylase inhibitor used in combination with bortezomib and dexamethasone in people who have received at least 2 prior chemotherapy regimens, including bortezomib and an immunomodulatory agent (such as lenalidomide or pomalidomide);
- carfilzomib — a proteasome inhibitor that is indicated:
- as a single agent for the treatment of patients with relapsed or refractory multiple myeloma who have received one or more lines of therapy;
- in combination with dexamethasone or with lenalidomide+dexamethasone for the treatment of patients with relapsed or refractory multiple myeloma who have received one to three lines of therapy;
- elotuzumab — an immunostimulatory humanized monoclonal antibody against SLAMF7 (also known as CD319). It is FDA-approved for the treatment of patients who have received one to three prior therapies (in combination with lenalidomide and dexamethasone);
- daratumumab — a monoclonal antibody against CD38 indicated for the treatment of patients with multiple myeloma who have received at least three prior lines of therapy including a proteasome inhibitor and an immunomodulatory agent or who are double refractory to a proteasome inhibitor and an immunomodulatory agent.
Most people, including those treated with ASCT, will relapse after initial treatment. Maintenance therapy using a prolonged course of low toxicity medications is often used to prevent relapse. A 2017 meta-analysis showed that post ASCT maintenance therapy with lenalidomide improved progression free survival and overall survival in people at standard risk. A 2012 clinical trial showed that people with intermediate and high risk disease benefit from a bortezomib based maintenance regimen.
The goals of the treatment for bone metastases include pain control, prevention and treatment of fractures, maintenance of patient function, and local tumor control. Treatment options are determined by multiple factors, including performance status, life expectancy, impact on quality of life, and overall status of clinical disease.
Pain management
The World Health Organization's pain ladder was designed for the management of cancer-associated pain, and mainly involves various strength of opioids. Mild pain or breakthrough pain may be treated with nonsteroidal anti-inflammatory drugs.
Other treatments include bisphosphonates, corticosteroids, radiotherapy, and radionucleotides.
Percutaneous osteoplasty involves the use of bone cement to reduce pain and improve mobility. In palliative therapy, the main options are external radiation and radiopharmaceuticals. High-intensity focused ultrasound (HIFU) has CE approval for palliative care for bone metastasis, though treatments are still in investigatory phases as more information is needed to study effectiveness in order to obtain full approval in countries such as the USA.
Thermal ablation techniques are increasingly being used in the palliative treatment of painful metastatic bone disease. Although the majority of patients experience complete or partial relief of pain following external radiation therapy, the effect is not immediate and has been shown in some studies to be transient in more than half of patients. For patients who are not eligible or do not respond to traditional therapies ( i.e. radiation therapy, chemotherapy, palliative surgery, bisphosphonates or analgesic medications), thermal ablation techniques have been explored as alternatives for pain reduction. Several multi-center clinical trials studying the efficacy of radiofrequency ablation in the treatment of moderate to severe pain in patients with metastatic bone disease have shown significant decreases in patient reported pain after treatment. These studies are limited, however, to patients with one or two metastatic sites; pain from multiple tumors can be difficult to localize for directed therapy. More recently, cryoablation has also been explored as a potentially effective alternative as the area of destruction created by this technique can be monitored more effectively by CT than radiofrequency ablation, a potential advantage when treating tumors adjacent to critical structures.
Monthly injections of radium-223 chloride (as Xofigo, formerly called Alpharadin) have
been approved by the FDA in May 2013 for castration-resistant prostate cancer (CRPC) with bone metastases.
A Cochrane review of calcitonin for the treatment of metastatic bone pain indicated no benefit in reduction of bone pain, complications, or quality of life.
Biophosphonates are drugs that are used to prevent bone mass loss and are often used to treat osteolytic lesions. Zoledronic acid (Reclast) is a specific drug given to cancer patients to prevent the worsening of bone lesions and has been reported to have anti-tumor effects as well. Zoledronic acid has been clinically tested in conjunction with calcium and vitamin D to encourage bone health. Denosumab, a monoclonal antibody treatment RANKl inhibitor that targets the osteocyte apoptosis regualtory RANKL gene, is also prescribed to prevent bone metastases and bone lesions. Most biophosphonates are co-prescribed with disease-specific treatments, such as chemotherapy or radiation for cancer patients.
Bone lesions in multiple myeloma patients may be treated with low-dose radiation therapy in order to reduce pain and other symptoms. Used in combination with immunochemotherapy, radiation therapy can be used to treat certain cancers when aimed at areas of bone lesion and softened bone.
If treatment has been successful ("complete" or "partial remission"), a person is generally followed up at regular intervals to detect recurrence and monitor for "secondary malignancy" (an uncommon side-effect of some chemotherapy and radiotherapy regimens—the appearance of another form of cancer). In the follow-up, which should be done at pre-determined regular intervals, general anamnesis is combined with complete blood count and determination of lactate dehydrogenase or thymidine kinase in serum.
Treatment can occasionally consist of "watchful waiting" (e.g. in CLL) or symptomatic treatment (e.g. blood transfusions in MDS). The more aggressive forms of disease require treatment with chemotherapy, radiotherapy, immunotherapy and—in some cases—a bone marrow transplant. The use of rituximab has been established for the treatment of B-cell–derived hematologic malignancies, including follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL).
Treatment of this disorder involves treatment of the underlying cancer.
The role of chemotherapy or other pharmacologic treatments against JMML before bone marrow transplant has not been studied completely and its importance is still unknown. Chemotherapy by itself has proven unable to bring about long-term survival in JMML.
- Low-dose conventional chemotherapy: Studies have shown no influence from low-dose conventional chemotherapy on JMML patients’ length of survival. Some combinations of 6-mercaptopurine with other chemotherapy drugs have produced results such as decrease in organ size and increase or normalization of platelet and leukocyte count.
- Intensive chemotherapy: Complete remission with ongoing durability from JMML has not been possible through use of intensive chemotherapy, but it is still used at times because it has improved the condition of a small but significant number of JMML patients who do not display an aggressive disease. The COG JMML study administers 2 cycles of fludarabine and cytarabine for 5 consecutive days along with 13-cis retinoic acid during and afterwards. The EWOG-MDS JMML study, however, does not recommend intensive chemotherapy before bone marrow transplant.
- 13-cis retinoic acid (Isotretinoin): In the lab, 13-cis-retinoic acid has inhibited the growth of JMML cells. The COG JMML study therefore includes 13-cis-retinoic acid in its treatment protocol, though its therapeutic value for JMML remains controversial.
The theory behind splenectomy in JMML is that the spleen may trap leukemic cells, leading to the spleen's enlargement, by harboring dormant JMML cells that are not eradicated by radiation therapy or chemotherapy for the active leukemia cells, thus leading to later relapse if the spleen is not removed. However, the impact of splenectomy on post-transplant relapse, though, is unknown. The COG JMML study includes splenectomy as a standard component of treatment for all clinically stable patients. The EWOG-MDS JMML study allows each child’s physician to determine whether or not a splenectomy should be done, and large spleens are commonly removed prior to bone marrow transplant. When a splenectomy is scheduled, JMML patients are advised to receive vaccines against "Streptococcus pneumoniae" and "Haemophilus influenza" at least 2 weeks prior to the procedure. Following splenectomy, penicillin may be administered daily in order to protect the patient against bacterial infections that the spleen would otherwise have protected against; this daily preventative regimen will often continue indefinitely.
Many different anti-cancer drugs are effective for the treatment of AML. Treatments vary somewhat according to the age of the patient and according to the specific subtype of AML. Overall, the strategy is to control bone marrow and systemic (whole-body) disease, while offering specific treatment for the central nervous system (CNS), if involved.
In general, most oncologists rely on combinations of drugs for the initial, "induction phase" of chemotherapy. Such combination chemotherapy usually offers the benefits of early remission and a lower risk of disease resistance. "Consolidation" and "maintenance" treatments are intended to prevent disease recurrence. Consolidation treatment often entails a repetition of induction chemotherapy or the intensification chemotherapy with additional drugs. By contrast, maintenance treatment involves drug doses that are lower than those administered during the induction phase.
The treatment of CMML remains challenging due to the lack of clinical trials investigating the disease as its own clinical entity. It is often grouped with MDS in clinical trials, and for this reason the treatment of CMML is very similar to that of MDS. Most cases are dealt with as supportive rather than curative because most therapies do not effectively increase survival. Indications for treatment include the presence of B symptoms, symptomatic organ involvement, increasing blood counts, hyperleukocytosis, leukostasis and/or worsening cytopaenias.
Blood transfusions and EPO administration are used to raise haemoglobin levels in cases with anaemia.
Azacitidine is a drug approved by the US Food & Drug Administration (FDA) for the treatment of CMML and by the European Medicines Agency for high risk non-proliferative CMML with 10-19% marrow blasts. It is a cytidine analogue that causes hypomethylation of DNA by inhibition of DNA methyltransferase. Decitabine is a similar drug to azacitidine and is approved by the FDA for treatments of all subtypes of MDS, including CMML. Hydroxyurea is a chemotherapy that is used in the myeloproliferative form of CMML to reduce cell numbers.
Haematopoietic stem cell transplant remains the only curative treatment for CMML. However, due to the late age of onset and presence of other illnesses, this form of treatment is often not possible.
There are many possible treatments for CML, but the standard of care for newly diagnosed patients is imatinib (Gleevec) therapy. Compared to most anti-cancer drugs, it has relatively few side effects and can be taken orally at home. With this drug, more than 90% of patients will be able to keep the disease in check for at least five years, so that CML becomes a chronic, manageable condition.
In a more advanced, uncontrolled state, when the patient cannot tolerate imatinib, or if the patient wishes to attempt a permanent cure, then an allogeneic bone marrow transplantation may be performed. This procedure involves high-dose chemotherapy and radiation followed by infusion of bone marrow from a compatible donor. Approximately 30% of patients die from this procedure.
To overcome imatinib resistance and to increase responsiveness to TK inhibitors, four novel agents were later developed. The first, dasatinib, blocks several further oncogenic proteins, in addition to more potent inhibition of the BCR-ABL protein, and was initially approved in 2007 by the US FDA to treat CML in patients who were either resistant to or intolerant of imatinib. A second new TK inhibitor, nilotinib, was also approved by the FDA for the same indication. In 2010, nilotinib and dasatinib were also approved for first-line therapy, making three drugs in this class available for treatment of newly diagnosed CML. In 2012, Radotinib joined the class of novel agents in the inhibition of the BCR-ABL protein and was approved in South Korea for patients resistant to or intolerant of imatinib. Bosutinib received US FDA and EU European Medicines Agency approval on September 4, 2012 and 27 March 2013 respectively for the treatment of adult patients with Philadelphia chromosome-positive (Ph+) chronic myelogenous leukemia (CML) with resistance, or intolerance to prior therapy.
First-line treatment of AML consists primarily of chemotherapy, and is divided into two phases: induction and postremission (or consolidation) therapy. The goal of induction therapy is to achieve a complete remission by reducing the number of leukemic cells to an undetectable level; the goal of consolidation therapy is to eliminate any residual undetectable disease and achieve a cure. Hematopoietic stem cell transplantation is usually considered if induction chemotherapy fails or after a person relapses, although transplantation is also sometimes used as front-line therapy for people with high-risk disease. Efforts to use tyrosine kinase inhibitors in AML continue.
In the past, antimetabolites (e.g., cytarabine, hydroxyurea), alkylating agents, interferon alfa 2b, and steroids were used as treatments of CML in the chronic phase, but since the 2000s have been replaced by Bcr-Abl tyrosine-kinase inhibitors drugs that specifically target BCR-ABL, the constitutively activated tyrosine kinase fusion protein caused by the Philadelphia chromosome translocation. Despite the move to replacing cytotoxic antineoplastics (standard anticancer drugs) with tyrosine kinase inhibitors sometimes hydroxyurea is still used to counteract the high leukocyte counts encountered during treatment with tyrosine kinase inhibitors like imatinib; in these situations it may be the preferred myelosuppressive agent due to its relative lack of leukemogenic effects and hence the relative lack of potential for secondary hematologic malignancies to result from treatment. IRIS, an international study that compared interferon/cytarabine combination and the first of these new drugs imatinib, with long-term follow up, demonstrated the clear superiority of tyrosine-kinase-targeted inhibition over existing treatments.
Recent case report studies suggest that treatment regimens which include a proteasome inhibitor drug, particularly bortezomib, and/or autologous stem-cell transplantation have improved pPCL survival. For example, 28 patients treated with a bortezomib-based induction regimen followed by autologous stem-cell transplantation and then a maintenance regimen of lenaldomide (an immunosuppressant related to thalidomide), bortezomib, and dexamethasone (a corticosteroid) has a progression free survival rate of 66% at 3 years and an overall survival rate of 73% at 4 years. In one study, patients receiving intensive chemotherapy plus autologous stem-cell transplantation had a median survival of 34 months while those receiving chemotherapy alone had a median survival of 11 months. Two other studies that included bortezomib in their chemotherapy regimens likewise found that the addition of autologous stem-cell transplantation improved results. Current recommendations for treating pPCL often include induction with a three drug regimen such as borezomib-lenalidomide-dexamethasone followed by autologous stem-cell transplantion and consolidation/maintenance with of combination of immunomodulator agents (e.g. thalidomide, lenalidomide, or pomalidomide) plus a proteasome inhibitor (bortezomib, ixazomib, or carfilzomib.
Determination of treatment options depends on certain factors, some of which affect internal organs and others that affect personal appearance. When determining treatment, oncologists consider the initial location the tumor, the likelihood of body function deterioration, the effect on appearance, and the patient's potential response to chemotherapy and radiation. Surgery is the least successful of the treatment options; the tumor cannot be completely removed because it develops within the cells. Chemotherapy follows surgery to shrink or eliminate the remaining cancer cells.
Stem cell research under clinical trial shows promise to replace lost cells.
The aggressiveness of this cancer requires the response of a large team of specialists, possibly including a pediatric surgeon, oncologist, hematologist, specialty nurse, and rehabilitation specialists. Social workers and psychologists aid recovery by building a system of emotional support. Treatment is harsh on the body and may result in side effects including mood swings, learning difficulties, memory loss, physical deformations or restrictions, and potential risk of secondary cancers.
If a patient is resistant to either cladribine or pentostatin, then second-line therapy is pursued.
Monoclonal antibodies The most common treatment for cladribine-resistant disease is infusing monoclonal antibodies that destroy cancerous B cells. Rituximab is by far the most commonly used. Most patients receive one IV infusion over several hours each week for four to eight weeks. A 2003 publication found two partial and ten complete responses out of 15 patients with relapsed disease, for a total of 80% responding. The median patient (including non-responders) did not require further treatment for more than three years. This eight-dose study had a higher response rate than a four-dose study at Scripps, which achieved only 25% response rate. Rituximab has successfully induced a complete response in Hairy Cell-Variant.
Rituximab's major side effect is serum sickness, commonly described as an "allergic reaction", which can be severe, especially on the first infusion. Serum sickness is primarily caused by the antibodies clumping during infusion and triggering the complement cascade. Although most patients find that side effects are adequately controlled by anti-allergy drugs, some severe, and even fatal, reactions have occurred. Consequently, the first dose is always given in a hospital setting, although subsequent infusions may be given in a physician's office. Remissions are usually shorter than with the preferred first-line drugs, but hematologic remissions of several years' duration are not uncommon.
Other B cell-destroying monoclonal antibodies such as Alemtuzumab, Ibritumomab tiuxetan and I-131 Tositumomab may be considered for refractory cases.
Interferon-alpha Interferon-alpha is an immune system hormone that is very helpful to a relatively small number of patients, and somewhat helpful to most patients. In about 65% of patients, the drug helps stabilize the disease or produce a slow, minor improvement for a partial response.
The typical dosing schedule injects at least 3 million units of Interferon-alpha (not pegylated versions) three times a week, although the original protocol began with six months of daily injections.
Some patients tolerate IFN-alpha very well after the first couple of weeks, while others find that its characteristic flu-like symptoms persist. About 10% of patients develop a level of depression. It is possible that, by maintaining a steadier level of the hormone in the body, that daily injections might cause fewer side effects in selected patients. Drinking at least two liters of water each day, while avoiding caffeine and alcohol, can reduce many of the side effects.
A drop in blood counts is usually seen during the first one to two months of treatment. Most patients find that their blood counts get worse for a few weeks immediately after starting treatment, although some patients find their blood counts begin to improve within just two weeks.
It typically takes six months to figure out whether this therapy is useful. Common criteria for treatment success include:
- normalization of hemoglobin levels (above 12.0 g/dL),
- a normal or somewhat low platelet count (above 100 K/µL), and
- a normal or somewhat low absolute neutrophil count (above 1.5 K/µL).
If it is well tolerated, patients usually take the hormone for 12 to 18 months. An attempt may be made then to end the treatment, but most patients discover that they need to continue taking the drug for it to be successful. These patients often continue taking this drug indefinitely, until either the disease becomes resistant to this hormone, or the body produces an immune system response that limits the drug's ability to function. A few patients are able to achieve a sustained clinical remission after taking this drug for six months to one year. This may be more likely when IFN-alpha has been initiated shortly after another therapy. Interferon-alpha is considered the drug of choice for pregnant women with active HCL, although it carries some risks, such as the potential for decreased blood flow to the placenta.
Interferon-alpha works by sensitizing the hairy cells to the killing effect of the immune system hormone TNF-alpha, whose production it promotes. IFN-alpha works best on classic hairy cells that are not protectively adhered to vitronectin or fibronectin, which suggests that patients who encounter less fibrous tissue in their bone marrow biopsies may be more likely to respond to Interferon-alpha therapy. It also explains why non-adhered hairy cells, such as those in the bloodstream, disappear during IFN-alpha treatment well before reductions are seen in adhered hairy cells, such as those in the bone marrow and spleen.
The treatment a child will undergo is based on the child's age, overall health, medical history, their tolerance for certain medications, procedures, and therapies, along with the parents' opinion and preference.
- Chemotherapy is a treatment that uses drugs to interfere with the cancer cells ability to grow and reproduce. Chemotherapy can be used alone or in combination with other therapies. Chemotherapy can be given either as a pill to swallow orally, an injection into the fat or muscle, through an IV directly into the bloodstream, or directly into the spinal column.
- A stem cell transplant is a process by which healthy cells are infused into the body. A stem-cell transplant can help the human body make enough healthy white blood cells, red blood cells, or platelets, and reduce the risk of life-threatening infections, anemia, and bleeding. It is also known as a bone-marrow transplant or an umbilical-cord blood transplant, depending on the source of the stem cells. Stem cell transplants can use the cells from the same person, called an autologous stem cell transplant or they can use stem cells from other people, known as an allogenic stem cell transplant. In some cases, the parents of a child with childhood leukemia may conceive a saviour sibling by preimplantation genetic diagnosis to be an appropriate match for the HLA antigen.
The goals of therapy are to control symptoms, improve quality of life, improve overall survival, and decrease progression to AML.
The IPSS scoring system can help triage patients for more aggressive treatment (i.e. bone marrow transplant) as well as help determine the best timing of this therapy. Supportive care with blood products and hematopoietic growth factors (e.g. erythropoietin) is the mainstay of therapy. The regulatory environment for the use of erythropoietins is evolving, according to a recent US Medicare National coverage determination. No comment on the use of hematopoeitic growth factors for MDS was made in that document though.
Three agents have been approved by the FDA for the treatment of MDS:
1. 5-azacytidine: 21-month median survival
2. Decitabine: Complete response rate reported as high as 43%. A phase I study has shown efficacy in AML when decitabine is combined with valproic acid.
3. Lenalidomide: Effective in reducing red blood cell transfusion requirement in patients with the chromosome 5q deletion subtype of MDS
Chemotherapy with the hypomethylating agents 5-azacytidine and decitabine has been shown to decrease blood transfusion requirements and to retard the progression of MDS to AML. Lenalidomide was approved by the FDA in December 2005 only for use in the 5q- syndrome. In the United States, treatment of MDS with lenalidomide costs about $9,200 per month.
Stem cell transplantation, particularly in younger (i.e. less than 40 years of age) and more severely affected patients, offers the potential for curative therapy. Success of bone marrow transplantation has been found to correlate with severity of MDS as determined by the IPSS score, with patients having a more favorable IPSS score tending to have a more favorable outcome with transplantation.