Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Once diagnosed and located, surgery is the most common treatment for a malunion. The surgery consists for the surgeon re-breaking the bone and realigning it to the anatomically correct position. There are different types and levels of extremity where it is possible that the bone will trimmed to allow full orientation at the fractured spot. Most often, either screws, plates or pins are used secure the new alignment. It is possible that a bone graft could be used to help with healing.
After surgery make sure not to smoke or use any nicotine products as that affects the healing process by limiting blood flow. Also, don’t use any NSAIDS (non steroidal anti-inflammatory drug) as that will also affect the blood flow and the healing to the area of fracture. Do not put weight on the area where the fracture and surgery occurred until informed by your doctor and that could lead to other and future problems. After surgery and the surgical stitches are removed you will be put into a cast to complete the healing process. During follow ups an X-ray or a CT scan may be used to verify that the fracture is healing properly and is now in the anatomical correct position.
Aside from surgery, there are a few options for handling an accessory navicular bone that has become symptomatic. This includes immobilization, icing, medicating, physical therapy, and orthotic devices. Immobilizing involves placing the foot and ankle in a cast or removable walking boot. This alleviates stressors on the foot and can decrease inflammation. Icing will help reduce swelling and inflammation. Medication involves usage of nonsteroidal anti-inflammatory drugs, or steroids (taken orally or injected) to decrease inflammation. Physical therapy can be prescribed in order to strengthen the muscles and help decrease inflammation. Physical therapy can also help prevent the symptoms from returning. Orthotic devices (arch support devices that fit in a shoe) can help prevent future symptoms. Occasionally, the orthotic device will dig into the edge of the accessory navicular and cause discomfort. For this reason, the orthotic devices made for the patient should be carefully constructed.
Vasodilators improve the blood flow into the vessels of the hoof. Examples include isoxsuprine (currently unavailable in the UK) and pentoxifylline.
Anticoagulants can also improve blood flow. The use of warfarin has been proposed, but the extensive monitoring required makes it unsuitable in most cases.
Anti-inflammatory drugs are used to treat the pain, and can help the lameness resolve sometimes if shoeing and training changes are made. Include Nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and other joint medications. The use of intramuscular glycosaminoglycans has been shown to decrease pain in horses with navicular disease, but this effect wanes after discontinuation of therapy. Oral glycosaminoglycans may have a similar effect.
Bisphosphonates can be useful in cases where bone remodeling is causing pain.
Gallium nitrate (GaN) has been hypothesized as a possible treatment for navicular disease, but its benefits have not been confirmed by formal clinical studies. One pilot study examined horses given gallium nitrate in their feed rations. While it was absorbed slowly, it did stay in the animals' system, providing a baseline dosage for future studies.
Bone stimulation may be with either electromagnetic or ultrasound waves. Ultrasound stimulation has tentative evidence of supporting better healing in long bones that have not healed after three months. Evidence; from a Cochrane review however, does not show that ultrasound decreases rates of nonunion. Another review has, however, suggested it as an alternative to surgery.
Surgical treatment options include:
- Removal of all scar tissue from between the fracture fragments
- Immobilization of the fracture with internal or external fixation. Metal plates, pins, screws, and rods, that are screwed or driven into a bone, are used to stabilize the broken bone fragments.
- Bone grafting. Donor bone or autologous bone (harvested from the same person undergoing the surgery) is used as a stimulus to bone healing. The presence of the bone is thought to cause stem cells in the circulation and marrow to form cartilage, which then turns to bone, instead of a fibrous scar that forms to heal all other tissues of the body. Bone is the only tissue that can heal without a fibrous scar. Autologus bone graft is the "gold standard" treatment of the non union the bone is obtained from the iliac crest.
In simple cases healing may be evident within 3 months. Gavriil Ilizarov revolutionized the treatment of recalcitrant nonunions demonstrating that the affected area of the bone could be removed, the fresh ends "docked" and the remaining bone lengthened using an external fixator device. The time course of healing after such treatment is longer than normal bone healing. Usually there are signs of union within 3 months, but the treatment may continue for many months beyond that.
Medication can be prescribed to ease the pain. Antibiotics and tetanus vaccination may be used if the bone breaks through the skin. Often, they are treated without surgery. In severe cases, surgery may be done.
Treatment options vary from very conservative to aggressive. Conservative options include rest, observation, pain control, diet changes, use of a nasopharyngeal tube or oropharyngeal tube, and antibiotic therapy. More aggressive options include surgical repair of the hyoid bone and/or tracheotomy. Surgical treatment was used in 10.9% of cases in a 2012 meta-analysis.
Horses with navicular syndrome need a less intense work schedule. Their fitness can be maintained through slow long-distance work or swimming, as opposed to being worked at high speeds, up steep hills, or on hard surfaces, irregular terrain, or deep footing. Reducing the frequency of jumping is also important. Some veterinarians and hoof care practitioners recommend exercising the horse on varied terrain to stimulate and strengthen the caudal hoof structures.
Treatment options for distal radius fractures include non-operative management, external fixation, and internal fixation. Indications for each depend on a variety of factors such as patient's age, initial fracture displacement, and metaphyseal and articular alignment, with the ultimate goal to maximize strength, and function in the affected upper extremity. Surgeons use these factors combined with radiologic imaging to predict fracture instability, and functional outcome in order to help decide which approach would be most appropriate. Treatment is often directed to restore normal anatomy to avoid the possibility of malunion, which may cause decreased strength in the hand and wrist. The decision to pursue a specific type of management varies greatly by geography, physician specialty (hand surgeons vs. orthopedic surgeons), and advancements in new technology such as the volar locking plating system.
A Cochrane review of low-intensity pulsed ultrasound to speed healing in newly broken bones found insufficient evidence to justify routine use. Other reviews have found tentative evidence of benefit. It may be an alternative to surgery for established nonunions.
Vitamin D supplements combined with additional calcium marginally reduces the risk of hip fractures and other types of fracture in older adults; however, vitamin D supplementation alone did not reduce the risk of fractures.
This treatment consists of aligning a bone or bones by a gentle, steady pulling action. The pulling may be transmitted to the bone or bones by a metal pin through a bone or by skin tapes. This is a preliminary treatment used in preparation for other secondary treatments.
Normally, asymptomatic cases are not treated. Non-steroidal anti inflammatory drugs and surgery are two typical options for the rest.
The arm must be supported by use of a splint or sling to keep the joint stable and decrease the risk of further damage. Usually, a figure-of-eight splint that wraps the shoulders to keep them forced back is used and the arm is placed in a clavicle strap for comfort.
Current practice is generally to provide a sling, and pain relief, and to allow the bone to heal itself, monitoring progress with X-rays every week or few weeks. Surgery is employed in 5–10% of cases. However, a recent study supports primary plate fixation of completely displaced midshaft clavicular fractures in active adult patients.
If the fracture is at the lateral end, the risk of nonunion is greater than if the fracture is of the shaft.
A cast, or brace, that allows limited movement of the nearby joints is acceptable for some fractures.
Surgical methods of treating fractures have their own risks and benefits, but usually surgery is performed only if conservative treatment has failed, is very likely to fail, or likely to result in a poor functional outcome. With some fractures such as hip fractures (usually caused by osteoporosis), surgery is offered routinely because non-operative treatment results in prolonged immobilisation, which commonly results in complications including chest infections, pressure sores, deconditioning, deep vein thrombosis (DVT), and pulmonary embolism, which are more dangerous than surgery. When a joint surface is damaged by a fracture, surgery is also commonly recommended to make an accurate anatomical reduction and restore the smoothness of the joint.
Infection is especially dangerous in bones, due to the recrudescent nature of bone infections. Bone tissue is predominantly extracellular matrix, rather than living cells, and the few blood vessels needed to support this low metabolism are only able to bring a limited number of immune cells to an injury to fight infection. For this reason, open fractures and osteotomies call for very careful antiseptic procedures and prophylactic use of antibiotics.
Occasionally, bone grafting is used to treat a fracture.
Sometimes bones are reinforced with metal. These implants must be designed and installed with care. "Stress shielding" occurs when plates or screws carry too large of a portion of the bone's load, causing atrophy. This problem is reduced, but not eliminated, by the use of low-modulus materials, including titanium and its alloys. The heat generated by the friction of installing hardware can accumulate easily and damage bone tissue, reducing the strength of the connections. If dissimilar metals are installed in contact with one another (i.e., a titanium plate with cobalt-chromium alloy or stainless steel screws), galvanic corrosion will result. The metal ions produced can damage the bone locally and may cause systemic effects as well.
Other treatments include core decompression, where internal bone pressure is relieved by drilling a hole into the bone, and a living bone chip and an electrical device to stimulate new vascular growth are implanted; and the free vascular fibular graft (FVFG), in which a portion of the fibula, along with its blood supply, is removed and transplanted into the femoral head. A 2012 Cochrane systematic review noted that no clear improvement can be found between people who have had hip core decompression and participate in physical therapy, versus physical therapy alone. More research is need to look into the effectiveness of hip core decompression for people with sickle cell disease.
Progression of the disease could possibly be halted by transplanting nucleated cells from bone marrow into avascular necrosis lesions after core decompression, although much further research is needed to establish this technique.
These fractures, although less common, often require surgery in active, healthy patients to address displacement of both the joint and the metaphysis. The two mainstays of treatment are bridging external fixation or ORIF. If reduction can be achieved by closed/percutaneous reduction, then open reduction can generally be avoided. Percutaneous pinning is preferred to plating due to similar clinical and radiological outcomes, as well as lower costs, when compared to plating, despite increased risk of superficial infections. Level of joint restoration, as opposed to surgical technique, has been found to be a better indicator of functional outcomes.
A variety of methods may be used to treat the most common being the total hip replacement (THR). However, THRs have a number of downsides including long recovery times and short life spans (of the hip joints). THRs are an effective means of treatment in the older population; however, in younger people they may wear out before the end of a person's life.
Other technicques such as metal on metal resurfacing may not be suitable in all cases of avascular necrosis; its suitability depends on how much damage has occurred to the femoral head. Bisphosphonates which reduces the rate of bone breakdown may prevent collapse (specifically of the hip) due to AVN.
In the absence of cartilage damage, pain at the front of the knee due to overuse can be managed with a combination of RICE (rest, ice, compression, elevation), anti-inflammatory medications, and physiotherapy.
Usually chondromalacia develops without swelling or bruising and most individuals benefit from rest and adherence to an appropriate physical therapy program. Allowing inflammation to subside while avoiding irritating activities for several weeks is followed by a gradual resumption. Cross-training activities such as swimming, strokes other than the breaststroke, can help to maintain general fitness and body composition. This is beneficial until a physical therapy program emphasizing strengthening and flexibility of the hip and thigh muscles can be undertaken. Use of nonsteroidal anti-inflammatory medication is also helpful to minimize the swelling amplifying patellar pain. Treatment with surgery is declining in popularity due to positive non-surgical outcomes and the relative ineffectiveness of surgical intervention.
In humans, excessive forces caused by sudden bending upwards of the big toe, high heels, or a stumble can contribute to sesamoiditis. Once the sesamoid bone is injured it can be very difficult to cure, because every time you walk you put additional pressure on the sesamoid bone. Treatment in humans consists of anti-inflammatory medication, cortisone injections, strapping to immobilize the big toe, and orthotics with special accommodations to keep pressure off the affected bone.
In horses, sesamoiditis is generally caused by excess stress on the fetlock joint. Conformation that promotes sesamoiditis include long pasterns, or horses with long toes and low heels.
Treatment of Gorham's disease is for the most part palliative and limited to symptom management.
Sometimes the bone destruction spontaneously ceases and no treatment is required. But when the disease is progressive, aggressive intervention may be necessary. Duffy and colleagues reported that around 17% of patients with Gorham's disease in the ribs, shoulder, or upper spine experience extension of the disease into the chest, leading to chylothorax with its serious consequences, and that the mortality rate in this group can reach as high as 64% without surgical intervention.
A search of the medical literature reveals multiple case reports of interventions with varying rates of success as follows:
Cardiothoracic (heart & lung):
- Pleurodesis
- Ligation of thoracic duct
- Pleurperitoneal shunt
- Radiation therapy
- Pleurectomy
- Surgical resection
- Thalidomide
- Interferon alpha-2b
- TPN (total parenteral nutrition)
- Thoracentesis
- Diet rich in medium-chain triglycerides and protein
- Chemotherapy
- Sclerotherapy
- Transplantation
Skeletal:
- Interferon alpha-2b
- Bisphosphonate (e.g. pamidronate)
- Surgical resection
- Radiation therapy
- Sclerotherapy
- Percutaneous bone cement
- Bone graft
- Prosthesis
- Surgical stabilization
- Amputation
To date, there are no known interventions that are consistently effective for Gorham's and all reported interventions are considered experimental treatments, though many are routine for other conditions. Some patients may require a combination of these approaches. Unfortunately, some patients will not respond to any intervention.
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used to treat PFPS, however there is only very limited evidence that they are effective. NSAIDs may reduce pain in the short term, overall however, after three months pain is not improved. There is no evidence that one type of NSAID is superior to another in PFPS, and therefore some authors have recommended that the NSAID with fewest side effects and which is cheapest should be used.
Glycosaminoglycan polysulfate (GAGPS) inhibits proteolytic enzymes and increases synthesis and degree of polymerization of hyaluronic acid in synovial fluid. There is contradictory evidence that it is effective in PFPS.
For low-risk stress fractures, rest is the best management option. The amount of recovery time varies greatly depending upon the location and severity of the fracture, and the body's healing response. Complete rest and a stirrup leg brace or walking boot are usually used for a period of four to eight weeks, although periods of rest of twelve weeks or more are not uncommon for more severe stress fractures. After this period, activities may be gradually resumed as long as the activities do not cause pain. While the bone may feel healed and not hurt during daily activity, the process of bone remodeling may take place for many months after the injury feels healed. Incidences of refracturing the bone are still a significant risk. Activities such as running or sports that place additional stress on the bone should only gradually be resumed. Rehabilitation usually includes muscle strength training to help dissipate the forces transmitted to the bones.
With severe stress fractures (see "prognosis"), surgery may be needed for proper healing. The procedure may involve pinning the fracture site, and rehabilitation can take up to six months.
Treatment in fibrous dysplasia is mainly palliative, and is focused on managing fractures and preventing deformity. There are no medications capable of altering the disease course. Intravenous bisphosphonates may be helpful for treatment of bone pain, but there is no clear evidence that they strengthen bone lesions or prevent fractures. Surgical techniques that are effective in other disorders, such as bone grafting, curettage, and plates and screws, are frequently ineffective in fibrous dysplasia and should be avoided. Intramedullary rods are generally preferred for management of fractures and deformity in the lower extremities. Progressive scoliosis can generally be managed with standard instrumentation and fusion techniques. Surgical management in the craniofacial skeleton is complicated by frequent post-operative FD regrowth, and should focus on correction of functional deformities. Prophylactic optic nerve decompression increases the risk of vision loss and is contraindicated.
Managing endocrinopathies is a critical component of management in FD. All patients with fibrous dysplasia should be evaluated and treated for endocrine diseases associated with McCune–Albright syndrome. In particular untreated growth hormone excess may worsen craniofacial fibrous dysplasia and increase the risk of blindness. Untreated hypophosphatemia increases bone pain and risk of fractures.
The scientific consensus is that surgery should be avoided except in very severe cases in which conservative treatments fail. The majority of individuals with PFPS receive nonsurgical treatment.