Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Blood squirt (blood spurt, blood spray, blood gush, or blood jet) is the effect when an artery, a blood vessel in the human body (or other organism's body) is cut. Blood pressure causes the blood to bleed out at a rapid, intermittent rate, in a spray or jet, coinciding with the beating of the heart, rather than the slower, but steady flow of venous bleeding. Also known as arterial bleeding, arterial spurting, or arterial gushing, the amount of blood loss can be copious, occur very rapidly, and can lead to death.
In cut carotid arteries with 100 mL of blood through the heart at each beat (at 65 beats a minute), a completely severed artery will spurt blood for about 30 seconds and the blood will not spurt much higher than the human head. If the artery is just nicked, on the other hand, the blood will spurt longer but will be coming out under pressure and spraying much further.
To prevent hand ischemia, there is a "squirt test" that involves squirting blood from the radial artery, which is used in intraoperative assessment of collateral arm blood flow before radial artery harvest.
In 1933, a murder trial prompted a testimony from Dr. Clement Harrisse Arnold about how far blood could spurt from the neck: 6 inches (ca. 15 cm) vertically and 18 inches (ca. 46 cm) laterally.
Effect on the body is weakness and mild to moderate dehydration from the severe anxiety and both blood and sweat loss.
The condition is very rare but there are reports in medical literature of successful treatment with beta blockers (propranolol 10 mg) with significant reduction in the frequency of spontaneous blood oozing. The successful use of beta blockers supports the theory that the condition is induced by stress and anxiety yet this etiology is not established yet as the high prevalence of stress and anxiety in the modern era did not change the incidence of this extremely rare disease, suggesting that other co-abnormality also play a key role in this disease. Atropine sulfate transdermal patches have also been used successfully.
Favorable results with psychiatric counselling to reduce stress highlight the relationship between psychogenic causes and hematohidrosis.
Emergency oxygen should be immediately employed to increase the efficiency of the patient's remaining blood supply. This intervention can be life-saving.
The use of intravenous fluids (IVs) may help compensate for lost fluid volume, but IV fluids cannot carry oxygen in the way that blood can; however, blood substitutes are being developed which can. Infusion of colloid or crystalloid IV fluids will also dilute clotting factors within the blood, increasing the risk of bleeding. It is current best practice to allow permissive hypotension in patients suffering from hypovolemic shock, both to ensure clotting factors are not overly diluted and also to stop blood pressure being artificially raised to a point where it "blows off" clots that have formed.
Fluid replacement is beneficial in hypovolemia of stage 2, and is necessary in stage 3 and 4. See also the discussion of shock and the importance of treating reversible shock while it can still be countered.
For a patient presenting with hypovolemic shock in hospital the following investigations would be carried out:
- Blood tests: U+Es/Chem7, full blood count, glucose, blood type and screen
- Central venous catheter or blood pressure
- Arterial line or arterial blood gases
- Urine output measurements (via urinary catheter)
- Blood pressure
- SpO2 Oxygen saturations
The following interventions would be carried out:
- IV access
- Oxygen as required
- Surgical repair at sites of hemorrhage
- Inotrope therapy (Dopamine, Noradrenaline) which increase the contractility of the heart muscle
- Fresh frozen plasma or whole blood
Vasopressors (like Norepinephrine, Dobutamine) should generally be avoided, as they may result in further tissue ischemia and don't correct the primary problem. Fluids are the preferred choice of therapy.
Vasopressors may be used if blood pressure does not improve with fluids. There is no evidence of substantial superiority of one vasopressor over another; however, using dopamine leads to an increased risk of arrythmia when compared with norepinephrine. Vasopressors have not been found to improve outcomes when used for hemorrhagic shock from trauma but may be of use in neurogenic shock. Activated protein C (Xigris) while once aggressively promoted for the management of septic shock has been found not to improve survival and is associated with a number of complications. Xigris was withdrawn from the market in 2011, and clinical trials were discontinued. The use of sodium bicarbonate is controversial as it has not been shown to improve outcomes. If used at all it should only be considered if the pH is less than 7.0.
Medium-term (and less well-demonstrated) treatments of hypotension include:
- Blood sugar control (80–150 by one study)
- Early nutrition (by mouth or by tube to prevent ileus)
- Steroid support
The medication midodrine can benefit people with orthostatic hypotension, The main side-effect is piloerection ("goose bumps"). Fludrocortisone is also used, although based on more limited evidence.
A number of other measures have slight evidence to support their use indomethacin, fluoxetine, dopamine antagonists, metoclopramide, domperidone, monoamine oxidase inhibitors with tyramine (can produce severe hypertension), oxilofrine, potassium chloride, and yohimbine.
Aggressive intravenous fluids are recommended in most types of shock (e.g. 1–2 liter normal saline bolus over 10 minutes or 20 ml/kg in a child) which is usually instituted as the person is being further evaluated. Which intravenous fluid is superior, colloids or crystalloids, remains undetermined. Thus as crystalloids are less expensive they are recommended. If the person remains in shock after initial resuscitation packed red blood cells should be administered to keep the hemoglobin greater than 100 g/l.
For those with haemorrhagic shock the current evidence supports limiting the use of fluids for penetrating thorax and abdominal injuries allowing mild hypotension to persist (known as permissive hypotension). Targets include a mean arterial pressure of 60 mmHg, a systolic blood pressure of 70–90 mmHg, or until their adequate mentation and peripheral pulses.
Apart from treating underlying reversible causes (e.g., stopping or reducing certain medications), there are a number of measures that can improve the symptoms of orthostatic hypotension and prevent episodes of syncope. Even small increases in the blood pressure may be sufficient to maintain blood flow to the brain on standing.
In people who do not have a diagnosis of high blood pressure, drinking 2–3 liters of fluid a day and taking 10 grams of salt can improve symptoms, by maximizing the amount of fluid in the bloodstream. Another strategy is keeping the head of the bed slightly elevated. This reduces the return of fluid from the limbs to the kidneys at night, thereby reducing nighttime urine production and maintaining fluid in the circulation. Various measures can be used to improve the return of blood to the heart: the wearing of compression stockings and exercises ("physical counterpressure manoeuvres" or PCMs) that can be undertaken just before standing up (e.g., leg crossing and squatting).
The treatment for hypotension depends on its cause. Chronic hypotension rarely exists as more than a symptom. Asymptomatic hypotension in healthy people usually does not require treatment. Adding electrolytes to a diet can relieve symptoms of mild hypotension. A morning dose of caffeine can also be effective. In mild cases, where the patient is still responsive, laying the person in dorsal decubitus (lying on the back) position and lifting the legs increases venous return, thus making more blood available to critical organs in the chest and head. The Trendelenburg position, though used historically, is no longer recommended.
Hypotensive shock treatment always follows the first four following steps. Outcomes, in terms of mortality, are directly linked to the speed that hypotension is corrected. Still-debated methods are in parentheses, as are benchmarks for evaluating progress in correcting hypotension. A study on septic shock provided the delineation of these general principles. However, since it focuses on hypotension due to infection, it is not applicable to all forms of severe hypotension.
1. Volume resuscitation (usually with crystalloid)
2. Blood pressure support with a vasopressor (all seem equivalent with respect to risk of death, with norepinephrine possibly better than dopamine). Trying to achieve a mean arterial pressure (MAP) of greater than 70 mmHg does not appear to result in better outcomes than trying to achieve a MAP of greater than 65 mm Hg in adults.
3. Ensure adequate tissue perfusion (maintain SvO2 >70 with use of blood or dobutamine)
4. Address the underlying problem (i.e., antibiotic for infection, stent or CABG (coronary artery bypass graft surgery) for infarction, steroids for adrenal insufficiency, etc...)
The best way to determine if a person will benefit from fluids is by doing a passive leg raise followed by measuring the output from the heart.
Early treatment is essential to keep the affected limb viable. The treatment options include injection of an anticoagulant, thrombolysis, embolectomy, surgical revascularisation, or amputation. Anticoagulant therapy is initiated to prevent further enlargement of the thrombus. Continuous IV unfractionated heparin has been the traditional agent of choice.
If the condition of the ischemic limb is stabilized with anticoagulation, recently formed emboli may be treated with catheter-directed thrombolysis using intraarterial infusion of a thrombolytic agent (e.g., recombinant tissue plasminogen activator (tPA), streptokinase, or urokinase). A percutaneous catheter inserted into the femoral artery and threaded to the site of the clot is used to infuse the drug. Unlike anticoagulants, thrombolytic agents work directly to resolve the clot over a period of 24 to 48 hours.
Direct arteriotomy may be necessary to remove the clot. Surgical revascularization may be used in the setting of trauma (e.g., laceration of the artery). Amputation is reserved for cases where limb salvage is not possible. If the patient continues to have a risk of further embolization from some persistent source, such as chronic atrial fibrillation, treatment includes long-term oral anticoagulation to prevent further acute arterial ischemic episodes.
Decrease in body temperature reduces the aerobic metabolic rate of the affected cells, reducing the immediate effects of hypoxia. Reduction of body temperature also reduces the inflammation response and reperfusion injury. For frostbite injuries, limiting thawing and warming of tissues until warmer temperatures can be sustained may reduce reperfusion injury.
Application of a topical antibiotic ointment to the nasal mucosa has been shown to be an effective treatment for recurrent epistaxis. One study found it as effective as nasal cautery in the prevention of recurrent epistaxis in people without active bleeding at the time of treatment—both had a success rate of approximately 50 percent.
The local application of a vasoconstrictive agent has been shown to reduce the bleeding time in benign cases of epistaxis. The drugs oxymetazoline or phenylephrine are widely available in over-the-counter nasal sprays for the treatment of allergic rhinitis, and they may be used for this purpose.
There are several methods of healing blood blisters, including elevation of the wound, application of a cold pack, and application of padded dressings or splints.
Arterial thrombosis is platelet-rich, and inhibition of platelet aggregation with antiplatelet drugs such as aspirin may reduce the risk of recurrence or progression.
Warfarin and vitamin K antagonists are anticoagulants that can be taken orally to reduce thromboembolic occurrence. Where a more effective response is required, heparin can be given (by injection) concomitantly. As a side effect of any anticoagulant, the risk of bleeding is increased, so the international normalized ratio of blood is monitored. Self-monitoring and self-management are safe options for competent patients, though their practice varies. In Germany, about 20% of patients were self-managed while only 1% of U.S. patients did home self-testing (according to one 2012 study). Other medications such as direct thrombin inhibitors and direct Xa inhibitors are increasingly being used instead of warfarin.
Treatment varies with the type of vascular disease; in the case of renal artery disease, information from a meta-analysis indicated that balloon angioplasty results in improvement of diastolic blood pressure and a reduction in antihypertensive drug requirements. In the case of peripheral artery disease, preventing complications is important; without treatment, sores or gangrene (tissue death) may occur. Among the treatments are:
- Quitting smoking
- Lowering cholesterol
- Lower blood pressure
- Lower blood glucose
- Physical activity
Surgery to remove the clot is possible, but rarely performed. In the past, surgical removal of the renal vein clot was the primary treatment but it is very invasive and many complications can occur. In the past decades, treatment has shifted its focus from surgical intervention to medical treatments that include intravenous and oral anticoagulants. The use of anticoagulants may improve renal function in RVT cases by removing the clot in the vein and preventing further clots from occurring. Patients already suffering from nephrotic syndrome may not need to take anticoagulants. In this case, patients should keep an eye out and maintain reduced level of proteinuria by reducing salt and excess protein, and intaking diuretics and statins. Depending on the severity of RVT, patients may be on anticoagulants from a year up to a lifetime. As long as the albumen levels in the bloodstream are below 2.5g/L, it is recommended that RVT patients continue taking anticoagulants. Main anticoagulants that can be used to treat RVT include warfarin and low molecular weight heparin. Heparin has become very popular, because of its low risk of complications, its availability and because it can easily be administered. Warfarin is known to interact with many other drugs, so careful monitoring is required. If a nephrotic syndrome patient experiences any of the RVT symptoms (flank or back pain, blood in the urine or decreased renal function), he or she should immediately see a doctor to avoid further complications.
The main side effect of anticoagulants is the risk of excessive bleeding. Other side effects include: blood in the urine or feces, severe bruising, prolonged nosebleeds (lasting longer than 10 minutes), bleeding gum, blood in your vomit or coughing up blood, unusual headaches, sudden severe back pain, difficulty breathing or chest pain, in women, heavy or increased bleeding during the period, or any other bleeding from the vagina. Warfarin can cause rashes, diarrhea, nausea (feeling sick) or vomiting, and hair loss. Heparin can cause hair loss (alopecia) thrombocytopenia – a sudden drop in the number of platelets in the blood.
It has been reported in a case study of 27 patients with nephrotic syndrome caused RVT, there was a 40% mortality rate, mostly due to hemorrhagic complications and sepsis. In 75% of the remaining surviving patients, the RVT was resolved and renal function returned to normal. It has been concluded that age is not a factor on the survival of RVT patients, although older patient (55 and older) are more likely to develop renal failure. Heparin is crucial in returning normal renal function; in patients that did not take heparin, long term renal damage was observed in 100%. In patients that did take heparin, renal damage was observed in about 33%. By quickly treating, and receiving the correct medications, patients should increase their chances of survival and reduce the risk of the renal vein clot from migrating to another part of the body.
Hematidrosis, also called blood sweat, is a very rare condition in which a human sweats blood. The term is from Greek "haima/haimatos" αἷμα, αἵματος meaning blood and "hidrōs" ἱδρώς meaning sweat.
Treatment for cerebrovascular disease may include medication, lifestyle changes and/or surgery, depending on the cause.
Examples of medications are:
- antiplatelets (aspirin, clopidogrel)
- blood thinners (heparin, warfarin)
- antihypertensives (ACE inhibitors, beta blockers)
- anti-diabetic medications.
Surgical procedures include:
- endovascular surgery and vascular surgery (for future stroke prevention).
When someone presents with an ischemic event, treatment of the underlying cause is critical for prevention of further episodes.
Anticoagulation with warfarin or heparin may be used if the patient has atrial fibrillation.
Operative procedures such as carotid endarterectomy and carotid stenting may be performed if the patient has a significant amount of plaque in the carotid arteries associated with the local ischemic events.
A hemothorax is managed by removing the source of bleeding and by draining the blood already in the thoracic cavity. Blood in the cavity can be removed by inserting a drain (chest tube) in a procedure called a tube thoracostomy. Generally, the thoracostomy tube is placed between the ribs in the sixth or seventh intercostal space at the mid-axillary line. Usually the lung will expand and the bleeding will stop after a chest tube is inserted.
The blood in the chest can thicken as the clotting cascade is activated when the blood leaves the blood vessels and comes into contact with the pleural surface, injured lung or chest wall, or with the chest tube. As the blood thickens, it can clot in the pleural space (leading to a retained hemothorax) or within the chest tube, leading to chest tube clogging or occlusion. Chest tube clogging or occlusion can lead to worse outcomes as it prevents adequate drainage of the pleural space, contributing to the problem of retained hemothorax. In this case, patients can be hypoxic, short of breath, or in some cases, the retained hemothorax can become infected (empyema).
Retained hemothorax occurs when blood remains in the pleural space, and is a risk factor for the development of complications, including the accumulation of pus in the pleural space and fibrothorax. It is treated by inserting a second chest tube or by drainage by video-assisted thoracoscopy. Fibrolytic therapy has also been studied as a treatment.
When hemothorax is treated with a chest tube, it is important that it maintain its function so that the blood cannot clot in the chest or the tube. If clogging occurs, internal chest tube clearing can be performed using an open or closed technique. Manual manipulation, which may also be called milking, stripping, or tapping, of chest tubes is commonly performed to maintain an open tube, but no conclusive evidence has demonstrated that any of these techniques are more effective than the others, or that they improve chest tube drainage.
In some cases bleeding continues and surgery is necessary to stop the source of bleeding. For example, if the hemothorax was caused by aortic rupture in high energy trauma, surgical intervention is mandatory.
If a diagnosis of GCA is suspected, treatment with steroids should begin immediately. A sample (biopsy) of the temporal artery should be obtained to confirm the diagnosis and guide future management, but should not delay initiation of treatment. Treatment does not recover lost vision, but prevents further progression and second eye involvement. High dose corticosteroids may be tapered down to low doses over approximately one year.
Alteplase (tpa) is an effective medication for acute ischemic stroke. When given within 3 hours, treatment with tpa significantly improves the probability of a favourable outcome versus treatment with placebo.
The outcome of brain ischemia is influenced by the quality of subsequent supportive care. Systemic blood pressure (or slightly above) should be maintained so that cerebral blood flow is restored. Also, hypoxaemia and hypercapnia should be avoided. Seizures can induce more damage; accordingly, anticonvulsants should be prescribed and should a seizure occur, aggressive treatment should be undertaken. Hyperglycaemia should also be avoided during brain ischemia.