Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is no resistance to Citrus Black Spot and once a tree has been infected there is no known cure causing tree removal to be the best option. Both Federal and State governments have recommended the following preventative measures.
To control "Guignardia citriparpa" fungicides like copper and/or strobilurins should be applied monthly from early May to the middle of September (in the northern hemisphere). Applications of the fungicides are recommended in early April (northern hemisphere) if that month has experienced more rainfall than usual resulting in the ideal conditions for citrus black spot to form.
Table 1. Recommended Chemical Controls for Citrus Black Spot
1)Lower rates can be used on smaller trees. Do not use less than minimum label rate.
2)Mode of action class for citrus pesticides from the Fungicide Resistance Action Committee (FRAC) 20111. Refer to ENY-624, "Pesticide Resistance and Resistance Management," in the 2012 Florida Citrus Pest Management Guide for more details.
3)Do not use more than 4 applications of strobilurin fungicides/season. Do not make more than 2 sequential applications of strobilurin fungicides.
Another method of control is to accelerate the leaf litter decomposition under the trees in citrus groves. Accelerating this decomposition reduces the chance for ascospore inoculation which generally takes place in the middle of March. There are three possible methods to hasten this decomposition. One method is the increase the mircrosprinkler irrigation in the grove to half an hour for at least five days of the week. This form of control should continue for about a month and a half. The second method is to apply urea or ammonium to the leaf litter. The last and final method to accelerate leaf decomposition is to apply lime or calcium carbonate to the litter. Urea, lime, and calcium carbonate reduce the number of fungal structures and spore production. Since the fungus requires wet conditions to thrive, air flow in the citrus grove should be maximized to reduce leaf wetness.
Along with these methods it is also important to get rid of debris such as fallen fruit or twigs in a manner that reduces the chances of infecting other plants. Citrus Black Spot can colonize and reproduce on dead twigs. To dispose of citrus debris it should either be heated to a minimum of 180℉ for two hours, incinerated, buried in a landfill, or fed to livestock. Plant trash should be moved with caution if at all to avoid spreading the infectious ascospores. Any trees that are infected with citrus black spot should be removed from the grove and disposed of. These trees must be removed because those that are declining and stressed will often have off season bloom. If there is more than one age of fruit present on the tree, it is possible for the asexual spores on the fruit to be transferred to new fruit, intensifying the disease. This off season blooming is often more problematic with Valencia oranges when old and new crops overlap.
Bacterial leaf streak of wheat is not easily prevented, but can be controlled with clean seed and resistance. Some foliar products, such as pesticides and antibiotic compounds, have been tested for effectiveness, but have proven to have insignificant outcomes on the bacterial pathogen.
Using clean seed, with little infection, has yielded effective results for researchers and producers. The pathogen, being seed-borne, can be controlled with the elimination of contaminated seed, however, clean seed is not always a sure solution. Because the pathogen may still live in the soil, the use of clean seed is only effective if both the soil and seed are free of the pathogen. Currently, there are no successful seed treatments available for producers to apply to wheat seed for the pathogen.
Variety resistance is another option for control of the disease. Using cultivars such as Blade, Cromwell, Faller, Howard or Knudson, which are resistant to BLS may reduce the impact of the disease and potentially break the disease cycle. Avoiding susceptible cultivars such as Hat Trick, Kelby, and Samson may also reduce the presence of the disease and reduce the amount of bacterial residue in the soil. Using integrated pest management techniques such as tillage to turn over the soil and bury the infection as well as rotating crops may assist with disease management, but are not a definitive control methods. Depending on conditions, the bacteria may survive for up to 81 months. Because the bacteria is moisture driven, irrigation may also increase the risks of BLS infection.
Thousand cankers disease can be spread by moving infected black walnut wood. Trees intended for shipment should be inspected for dieback and cankers and galleries after harvest. G. morbidia or the walnut twig beetle ("Pityophthorus juglandis") are not currently known to be moved with walnut seed . There is currently no chemical therapy or prevention available for the disease making it difficult to control the spread of the disease from the west to the eastern united states. Wood from infected trees can still be used for commercial value, but safety measures such as removing the bark, phloem, and cambium to reduce the risk of spreading the disease with shipment. Quarantines have been put in place in some states to reduce the potential movement of fungus or beetle from that region. On May 17th, 2010, the Director of the Michigan Department of Agriculture issued a quarantine from affected states to protect Michigan’s black walnut ecology and production. Contacting the appropriate entities about possible infections is important to stopping or slowing the spread of thousand cankers disease.
In order to control for the disease, the "Lymnaea" spp snails, which are the intermediate host for the liver flukes, need to be controlled. There are three ways that have proven most effective when controlling the snail populations:
- The first is by treating pastures and water channels with copper sulfate. This method is not always practical, because it is too expensive to treat in large areas. Lack of cooperation between neighbors is also a problem, snails are easily transported, and treated pastures become re-infested by neighboring fields and streams.
- Drenching the sheep with carbon tetra-chloride in paraffin oil has proven to be an alternative. However, drenching in more than recommended doses can be fatal, by causing liver damage, which could initiate the disease in sheep carrying "B. oedematiens" spores.
- Drainage is an effective option to eliminate the snails. However, draining the places where the grass grows eliminates a source of food for the sheep and creates other unwanted problems.
In affected orchards, new infections can be reduced by removing leaf litter and trimmings containing infected tissue from the orchard and incinerating them. This will reduce the amount of new ascospores released in the spring. Additionally, scab lesions on woody tissue can be excised from the tree if possible and similarly destroyed.
Chemical controls can include a variety of compounds. Benzimidazole fungicides, e.g., Benlate (now banned in many countries due to its containing the harmful chemical benzene) work well but resistance can arise quickly. A number of other chemical classes including sterol inhibitors such as Nova 40, and strobilurins such as Sovran are used extensively; however, some of these are slowly being phased out because of resistance problems.
Contact fungicides not prone to resistance, such as Captan, are viable choices. Potassium bicarbonate is an effective fungicide against apple scab, as well as powdery mildew, and is allowed for use in organic farming. Copper and Bordeaux mixture are traditional controls but are less effective than chemical fungicides, and can cause russeting of the fruit. Wettable sulfur also provides some control. Timing of application and concentration varies between compounds.
An apple scab prognostic model called RIMpro was developed by Marc Trapman, which numerically grades infection risk and can serve as a warning system. It allows better targeted spraying. Parameter for calculation are wetness of leaves, amount of rain fall and temperature.
Fifteen genes have been found in apple cultivars that confer resistance against apple scab. Researchers hope to use cisgenic techniques to introduce these genes into commercial cultivars and therefore create new resistant cultivars. This can be done through conventional breeding but would take over 50 years to achieve.
Sugarcane smut or "Ustilago scitaminea Sydow" is caused by the fungus "Sporisorium scitamineum"; smut was previously known as "Ustilago scitaminea". The smut 'whip' is a curved black structure which emerges from the leaf whorl, and which aids in the spreading of the disease. Sugarcane smut causes significant losses to the economic value of a sugarcane crop. Sugarcane smut has recently been found in the eastern seaboard areas of Australia, one of the world's highest-yielding sugar areas.
For the sugarcane crop to be infected by the disease, large spore concentrations are needed. The fungi uses its "smut-whip" to ensure that the disease is spread to other plants, which usually occurs over a time period of three months. As the inoculum is spread, the younger sugarcane buds just coming out of the soil will be the most susceptible. Because water is necessary for spore germination, irrigation has been shown to be a factor in spreading the disease. Therefore, special precautions need to be taken during irrigation to prevent spreading of the smut.
Another way to prevent the disease from occurring in the sugarcane is to use fungicide. This can be done by either pre-plant soaking or post-plant spraying with the specific fungicide. Pre-plant soaking has been proven to give the best results in preventing the disease, but post-plant spraying is a practical option for large sugarcane cultivations.
Black band disease is a coral disease in which corals develop a black band. It is characterized by complete tissue degradation due to a pathogenic microbial consortium. The mat is present between apparently healthy coral tissue and freshly exposed coral skeleton.
White band disease (Acroporid white syndrome) is a coral disease that affects acroporid corals and is distinguishable by the white band of dead coral tissue that it forms. The disease completely destroys the coral tissue of Caribbean acroporid corals, specifically elkhorn coral ("Acropora palmata") and staghorn coral ("A. cervicornis"). The disease exhibits a pronounced division between the remaining coral tissue and the exposed coral skeleton. These symptoms are similar to white plague, except that white band disease is only found on acroporid corals, and white plague has not been found on any acroporid corals. It is part of a class of similar disease known as "white syndromes", many of which may be linked to species of "Vibrio" bacteria. While the pathogen for this disease has not been identified, "Vibrio carchariae" may be one of its factors. The degradation of coral tissue usually begins at the base of the coral, working its way up to the branch tips, but it can begin in the middle of a branch.
The genus Geosmithia (Ascomycota: Hypocreales) are generally saprophytic fungi affecting hardwoods. As of its identification in 2010, the species G. morbida is the first documented as a plant pathogen. The walnut twig beetle ("Pityophthorus juglandis") carries the mycelium and conidia of the fungus as it burrows into the tree. The beetle is currently only found in warmer climates, allowing for transmission of the fungus throughout the year. Generations of the beetle move to and from black walnut trees carrying the fungus as they create galleries, the adults typically moving horizontally, and the larvae moving vertically with the grain. As they move through the wood, the beetles deposit the fungus, which is then introduced into the phloem; cankers then develop around the galleries, quickly girdling the tree. The fungus has not been found to provide any value to the beetle. A study done by Montecchio and Faccoli in Italy in 2014 found that no fungal fruiting bodies were found around or on the cankers but in the galleries. Mycelium, and sometimes conidiophores and conidia were observed in the galleries as well. No sexual stage of the fungus has currently been found.
Black band disease was first observed on reefs in Belize in 1973 by A. Antonius, who described the pathogen he found infecting corals as "Oscillatoria membranacea", one of the cyanobacteria. The band color may be blackish brown to red depending on the vertical position of a cyanobacterial population associated with the band. The vertical position is based on a light intensity-dependent photic response of the cyanobacterial filaments, and the color (due to the cyanobacterial pigment phycoerythrin) is dependent on the thickness of the band. The band is approximately thick and ranges in width from to White specks may be present on surface, at times forming dense white patches. The pathogenic microbial mat moves across coral colonies at rates from to a day. Tissue death is caused by exposure to an hypoxic, sulfide-rich microenvironment associated with the base of the band.
Yellow-band disease (similar to Yellow Blotch disease) is a coral disease that attacks colonies of coral at a time when coral is already under stress from pollution, overfishing, and climate change. It is characterized by large blotches or patches of bleached, yellowed tissue on Caribbean scleractinian corals.
Yellow-band disease is a bacterial infection that spreads over coral, causing the discolored bands of pale-yellow or white lesions along the surface of an infected coral colony. The lesions are the locations where the bacteria have killed the coral’s symbiotic photosynthetic algae, called zooxanthellae which are a major energy source for the coral. This cellular damage and the loss of its major energy source cause the coral to starve, and usually cause coral death. There is evidence that climate change could be worsening the disease.
Coral diseases, comprising the diseases that affect corals, injure the living tissues and often result in the death of part or the whole of the colony. These diseases have been occurring more frequently in the twenty-first century as conditions become more stressful for many shallow-water corals. The pathogens causing the diseases include bacteria, fungi and protozoa, but it is not always possible to identify the pathogen involved.
Yellow-band disease has severely affected reef building corals in the Caribbean. This disease have been associated with lower coral fecundity, altered tissue composition and a lower activites of antixenobiotic and antioxidant enzymes. Compared to the late 1990s, current data suggests that the disease remains a severe epidemic. In one study, 10 meter belt transects were taken at various depths, sampling coral colonies in the Lesser Antilles. At a depth of 5 m, yellow band rings and lesions were found on 79% of the colonies per transect, and only 21% of the colonies in this depth range appeared healthy.
Recent research indicates that yellow-band disease continues to be in an infectious phases in the Caribbean. It has been
found to cause infection in Pacific coral as well.
In Ghana, a study that combined the sanitation and fungicide application showed a significant reduction in the percentage of disease incidence, where greater black pod incident were observed from pods on the trunk than the canopy in control treatment (no fungicide application). This suggested that the application of fungicide on the trunk would protect pods from infection, therefore reduce primary and secondary infection rate, both on the trunk and in the canopy. In addition, the application of systemic (potassium phosphonate) with one and double injection (20 ml and 40 ml of fungicide for each injection frequency), and semi-systemic (metalaxyl) fungicide showed better control compared to contact fungicides (copper based fungicide) in both locations that were used in the experiment.
Bacterial leaf streak (BLS), also known as black chaff, is a common bacterial disease of wheat. The disease is caused by the bacterial species "Xanthomonas translucens" pv. undulosa. The pathogen is found globally, but is a primary problem in the US in the lower mid-south and can reduce yields by up to 40 percent. BLS is primarily seed-borne (the disease is transmitted by seed) and survives in and on the seed, but may also survive in crop residue in the soil in the off-season. During the growing season, the bacteria may transfer from plant to plant by contact, but it is primarily spread by rain, wind and insect contact. The bacteria thrives in moist environments, and produces a cream to yellow bacterial ooze, which, when dry, appears light colored and scale-like, resulting in a streak on the leaves. The invasion of the head of wheat causes bands of necrotic tissue on the awns, which is called Black Chaff.
The disease is not easily managed, as there are no pesticides on the market for treatment of the infection. There are some resistant cultivars available, but no seed treatment exists. Some integrated pest management (IPM) techniques may be used to assist with preventing infection although, none will completely prevent the disease.
Black pod disease is caused by many different "Phytophthora spp." pathogens all expressing the same symptoms in cocoa trees ("Theobroma cacao"). This pathogen if left untreated can destroy all yields; annually the pathogen can cause a yield loss of up to 1/3 and up to 10% of total trees can be lost completely. With the value of the cocoa industry throughout the world being so large there are much research and control efforts that go into these "Phytophthora spp." pathogens.
This pathogen can be located anywhere on the cocoa trees but is most noted for the black mummified look it will give to the fruit of the cocoa tree. Staying ahead of the pathogen is the best means of control, the pathogen can be greatly reduced if leaf litter is not allowed to stay on the ground and if the pathogen gets out of hand chemical control can be used. This pathogen is mostly found in tropical areas where the cocoa trees are located and need rainfall in order to spread its spores.
Skeletal eroding band (SEB) is a disease of corals that appears as a black or dark gray band that slowly advances over corals, leaving a spotted region of dead coral in its wake. It is the most common disease of corals in the Indian and Pacific Oceans, and is also found in the Red Sea.
So far one agent has been clearly identified, the ciliate "Halofolliculina corallasia". This makes SEB the first coral disease known to be caused by a protozoan. When "H. corallasia" divides, the daughter cells move to the leading edge of the dark band and produce a protective shell called a lorica. To do this, they drill into the coral's limestone skeleton, killing coral polyps in the process.
A disease with very similar symptoms has been found in the Caribbean Sea, but has been given a different name as it is caused by a different species in the genus "Halofolliculina" and occurs in a different type of environment.
Citrus Black Spot is a fungal disease caused by Guignardia citricarpa. This Ascomycete fungus affects citrus plants throughout subtropical climates, causing a reduction in both fruit quantity and quality. Symptoms include both fruit and leaf lesions, the latter being critical to inter-tree dispersal. Strict regulation and management is necessary to control this disease since there are currently no citrus varieties that are resistant.
It has been observed in spiny lobsters ("Panulirus ornatus") in Vietnam, where it is caused by a species of "Fusarium".
It has been observed in shrimp, where the agent is microscopic protozoan "Hyalophysa chattoni" or a close relative, in Galveston Bay, Texas and other locations.
Apple scab is a disease of "Malus" trees, such as apple trees, caused by the ascomycete fungus "Venturia inaequalis". The disease manifests as dull black or grey-brown lesions on the surface of tree leaves, buds or fruits. Lesions may also appear less frequently on the woody tissues of the tree. Fruits and the undersides of leaves are especially susceptible. The disease rarely kills its host, but can significantly reduce fruit yields and fruit quality. Affected fruits are less marketable due to the presence of the black fungal lesions.
White band disease causes the affected coral tissue to decorticate off the skeleton in a white uniform band for which the disease was given its name. The band, which can range from a few millimeters to 10 centimeters wide, typically works its way from the base of the coral colony up to the coral branch tips. The band progresses up the coral branch at an approximate rate of 5 millimeters per day, causing tissue loss as it works its way to the branch tips. After the tissue is lost, the bare skeleton of the coral may later by colonized by filamentous algae.
There are two variants of white band disease, type I and type II. In Type I of white band disease, the tissue remaining on the coral branch shows no sign of coral bleaching, although the affected colony may appear lighter in color overall. However, a variant of white band disease, known simply as white band disease Type II, which was found on Staghorn colonies near the Bahamas, does produce a margin of bleached tissue before it is lost. Type II of white band disease can be mistaken for coral bleaching. By examining the remaining living coral tissue for bleaching, one can delineate which type of the disease affects a given coral.
With extra care taken to the health of the shrimp, it is possible to prevent cases of black gill disease. The water should have 10-20 parts per thousand parts salinity and filtered.
The smuts are multicellular fungi characterized by their large numbers of teliospores. The smuts get their name from a Germanic word for dirt because of their dark, thick-walled, and dust-like teliospores. They are mostly Ustilaginomycetes (of the class Teliomycetae, subphylum Basidiomycota) and can cause plant disease. The smuts are grouped with the other basidiomycetes because of their commonalities concerning sexual reproduction.
Smuts are cereal and crop pathogens that most notably affect members of the grass family ("Poaceae"). Economically important hosts include maize, barley, wheat, oats, sugarcane, and forage grasses. They eventually hijack the plants' reproductive systems, forming galls which darken and burst, releasing fungal teliospores which infect other plants nearby. Before infection can occur, the smuts need to undergo a successful mating to form dikaryotic hyphae (two haploid cells fuse to form a dikaryon).
Starting antibiotics early is a first step in treating septicemic plague in humans. One of the following antibiotics may be used:
- Streptomycin
- Gentamicin
- Tetracycline or doxycycline
- Chloramphenicol
- Ciprofloxacin
Lymph nodes may require draining and the patient will need close monitoring.
In animals, antibiotics such as tetracyline or doxycycline can be used. Intravenous drip may be used to assist in dehydration scenarios. Flea treatment can also be used. In some cases euthanasia may be the best option for treatment and to prevent further spreading.
Stony corals and soft corals are subject to disease in the same way as other organisms. This may not have been obvious in the past but is becoming increasingly apparent in the twenty-first century. The ill health is the result of the corals being subjected to increasing amounts of stress as the physical environment in which they live becomes less suited to their needs.
Corals live within a precise range of environmental conditions including water temperature, salinity and water quality. Variations outside the normal range of these parameters may make the corals less able to grow and reproduce successfully. Of themselves these variations may be insufficient to kill the corals, but they make them more susceptible to disease organisms. The main factor that causes stress to the corals is climate change, with an increase in sea temperatures, particularly affecting shallow-water corals in the tropics. One of the consequences of heat stress is that the coral expels its zooxanthellae and becomes bleached. The rise in sea temperature is also expected to increase the frequency and severity of tropical storms; these adversely affect corals through mechanical damage to reefs, through increased wave action, and through the stirring up and re-deposition of sediment. Other stress factors include increased pollution, increased ultraviolet radiation, and a reduction in the aragonite saturation of surface seawater that is connected with ocean acidification. Although stressed corals are more susceptible to coral diseases, it is infectious organisms that actually cause these diseases. Pathogens so far identified include bacteria, fungi and protozoans.