Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment of THB deficiencies consists of THB supplementation (2–20 mg/kg per day) or diet to control blood phenylalanine concentration and replacement therapy with neurotransmitters precursors (L-DOPA and 5-HTP) and supplements of folinic acid in DHPR deficiency.
Tetrahydrobiopterin is available as a tablet for oral administration in the form of "tetrahydrobiopterin dihydrochloride" (BH4*2HCL). BH4*2HCL is FDA approved under the trade name Kuvan. The typical cost of treating a patient with Kuvan is $100,000 per year. BioMarin holds the patent for Kuvan until at least 2024, but Par Pharmaceutical has a right to produce a generic version by 2020. BH4*2HCL is indicated at least in tetrahydrobiopterin deficiency caused by GTPCH deficiency or PTPS deficiency.
Low-protein food is recommended for this disorder, which requires food products low in particular types of amino acids (e.g., methionine).
No specific cure has been discovered for homocystinuria; however, many people are treated using high doses of vitamin B (also known as pyridoxine). Slightly less than 50% respond to this treatment and need to take supplemental vitamin B for the rest of their lives. Those who do not respond require a Low-sulfur diet (especially monitoring methionine), and most will need treatment with trimethylglycine. A normal dose of folic acid supplement and occasionally adding cysteine to the diet can be helpful, as glutathione is synthesized from cysteine (so adding cysteine can be important to reduce oxidative stress).
Betaine (N,N,N-trimethylglycine) is used to reduce concentrations of homocysteine by promoting the conversion of homocysteine back to methionine, i.e., increasing flux through the re-methylation pathway independent of folate derivatives (which is mainly active in the liver and in the kidneys).The re-formed methionine is then gradually removed by incorporation into body protein. The methionine that is not converted into protein is converted to S-adenosyl-methionine which goes on to form homocysteine again. Betaine is, therefore, only effective if the quantity of methionine to be removed is small. Hence treatment includes both betaine and a diet low in methionine. In classical homocystinuria (CBS, or cystathione beta synthase deficiency), the plasma methionine level usually increases above the normal range of 30 micromoles/L and the concentrations should be monitored as potentially toxic levels (more than 400 micromoles/L) may be reached.
The main treatments for CTLN1 include a low-protein, high-calorie diet with amino acid supplements, particularly arginine. The Ucyclyd protocol, using buphenyl and ammonul, is used for treatment as well. Hyperammonemia is treated with hemodialysis; intravenous arginine, sodium benzoate, and sodium phenylacetate. In some cases, liver transplantation may be a viable treatment. L-carnitine is used in some treatment protocols.
Although there is currently no cure, treatment includes injections of structurally similar compound, N-Carbamoyl-L-glutamate, an analogue of N-Acetyl Glutamate. This analogue likewise activates CPS1. This treatment mitigates the intensity of the disorder.
If symptoms are detected early enough and the patient is injected with this compound, levels of severe mental retardation can be slightly lessened, but brain damage is irreversible.
Early symptoms include lethargy, vomiting, and deep coma.
Management for mitochondrial trifunctional protein deficiency entails the following:
- Avoiding factors that might precipitate condition
- Glucose
- Low fat/high carbohydrate nutrition
Administration of cytidine monophosphate and uridine monophosphate reduces urinary orotic acid and ameliorates the anemia.
Administration of uridine, which is converted to UMP, will bypass the metabolic block and provide the body with a source of pyrimidine.
Uridine triacetate is a drug approved by FDA to be used in the treatment of hereditary orotic aciduria.
A high-protein diet can overcome the deficient transport of neutral amino acids in most patients. Poor nutrition leads to more frequent and more severe attacks of the disease, which is otherwise asymptomatic. All patients who are symptomatic are advised to use physical and chemical protection from sunlight: avoid excessive exposure to sunlight, wear protective clothing, and use chemical sunscreens with a SPF of 15 or greater. Patients also should avoid other aggravating factors, such as photosensitizing drugs, as much as possible. In patients with niacin deficiency and symptomatic disease, daily supplementation with nicotinic acid or nicotinamide reduces both the number and severity of attacks. Neurologic and psychiatric treatment is needed in patients with severe central nervous system involvement.
In terms of beta-mannosidosis treatment there is none currently, individuals that exhibit muscle weakness or seizures are treated based on the symptoms(since there's no cure)
There is no cure for GALT deficiency, in the most severely affected patients, treatment involves a galactose free diet for life. Early identification and implementation of a modified diet greatly improves the outcome for patients. The extent of residual GALT enzyme activity determines the degree of dietary restriction. Patients with higher levels of residual enzyme activity can typically tolerate higher levels of galactose in their diets. As patients get older, dietary restriction is often relaxed. With the increased identification of patients and their improving outcomes, the management of patients with galactosemia in adulthood is still being understood.
After diagnosis, patients are often supplemented with calcium and vitamin D3. Long-term manifestations of the disease including ovarian failure in females, ataxia. and growth delays are not fully understood. Routine monitoring of patients with GALT deficiency includes determining metabolite levels (galactose 1-phosphate in red blood cells and galactitol in urine) to measure the effectiveness of and adherence to dietary therapy, ophthalmologic examination for the detection of cataracts and assessment of speech, with the possibility of speech therapy if developmental verbal dyspraxia is evident.
If treatment is initiated early in disease the neurologic sequelae may be reversed and further deterioration can be prevented.
Treatment normally consists of rigorous dieting, involving massive amounts of vitamin E. Vitamin E helps the body restore and produce lipoproteins, which people with abetalipoprotenimia usually lack. Vitamin E also helps keep skin and eyes healthy; studies show that many affected males will have vision problems later on in life. Developmental coordination disorder and muscle weakness are usually treated with physiotherapy or occupational therapy. Dietary restriction of triglycerides has also been useful.
Since PCT is a chronic condition, a comprehensive management of the disease is the most effective means of treatment. Primarily, it is key that patients diagnosed with PCT avoid alcohol consumption, iron supplements, excess exposure to sunlight (especially in the summer), as well as estrogen and chlorinated cyclic hydrocarbons, all of which can potentially exacerbate the disorder. Additionally, the management of excess iron (due to the commonality of hemochromatosis in PCT patients) can be achieved through phlebotomy, whereby blood is systematically drained from the patient. A borderline iron deficiency has been found to have a protective affect by limiting heme synthesis. In the absence of iron, which is to be incorporated in the porphyrin formed in the last step of the synthesis, the mRNA of erythroid 5-aminolevulinate synthase (ALAS-2) is blocked by attachment of an iron-responsive element (IRE) binding cytosolic protein, and transcription of this key enzyme is inhibited.
Low doses of antimalarials can be used. Orally ingested chloroquine is completely absorbed in the gut and is preferentially concentrated in the liver, spleen, and kidneys. They work by removing excess porphyrins from the liver via increasing the excretion rate by forming a coordination complex with the iron center of the porphyrin as well as an intramolecular hydrogen bond between a propionate side chain of the porphyrin and the protonated quinuclidine nitrogen atom of either alkaloid. Due to the presence of the chlorine atom, the entire complex is more water soluble allowing the kidneys to preferentially remove it from the blood stream and expel it through urination. It should be noted that chloroquine treatment can induce porphyria attacks within the first couple of months of treatment due to the mass mobilization of porphyrins from the liver into the blood stream. Complete remission can be seen within 6–12 months as each dose of antimalarial can only remove a finite amount of porphyrins and there are generally decades of accumulation to be cleared. Originally, higher doses were used to treat the condition but are no longer recommended because of liver toxicity. Finally, due to the strong association between PCT and Hepatitis C, the treatment of Hepatitis C (if present) is vital to the effective treatment of PCT.
Chloroquine, hydroxychloroquine, and venesection are typically employed in the management strategy.
Copper deficiency is a very rare disease and is often misdiagnosed several times by physicians before concluding the deficiency of copper through differential diagnosis (copper serum test and bone marrow biopsy are usually conclusive in diagnosing copper deficiency). On average, patients are diagnosed with copper deficiency around 1.1 years after their first symptoms are reported to a physician.
Copper deficiency can be treated with either oral copper supplementation or intravenous copper. If zinc intoxication is present, discontinuation of zinc may be sufficient to restore copper levels back to normal, but this usually is a very slow process. People who suffer from zinc intoxication will usually have to take copper supplements in addition to ceasing zinc consumption. Hematological manifestations are often quickly restored back to normal. The progression of the neurological symptoms will be stopped by appropriate treatment, but often with residual neurological disability.
There are a multiple ways to treat Gunther's diseases, but one of the most crucial things that a person with this disease can do is limit themselves from sun exposure or eliminate sun exposure altogether. There are some sunscreens that have undesirable effects such as tropical sunscreens, but other sunscreens that have zinc oxide and titanium dioxide in them are shown to provide protection due to those light-reflective agents. To block the ultraviolet and visible light wavelengths and get the protection that patients with Gunther's disease require, physical barriers are needed. It is also advised that patients wear protective clothing to block the sun from their skin. Plastic films can be attached to car windows and homes to filter out some of the wavelengths that could cause harm to someone's skin suffering with this disease. Incandescent bulbs replace the normal fluorescent lamps. These bulbs release less light, which prevents the "porphyrin-exciting" wavelengths that fluorescent lights emit.
Other less beneficial treatments have been used to help treat Gunther's disease. These include oral beta-carotene and other treatments such as activated charcoal and cholestyramine, which are used to interrupt and stop the porphyrins from being reabsorbed in the body. The reason that these oral treatments are unreasonable is because they require an extremely large dose of medicine and therefore are not beneficial.
Erythrocyte transfusions have been shown to be a successful measure in decreasing the appearance of the disease by trying to lower the erythropoiesis and circulating porphyrin levels. Unfortunately, having chronic erythrocyte transfusions, it can be extremely harmful to the body and can cause severe complications.
To help with dry eye symptoms and visual function, using topical lubrication can be used.
A more invasive way to help treat Gunther's disease would be to have surgery. There have been numerous studies that have stated that bone marrow transplantation is successful. This is a recently new development for Gunther's disease so the long-term effects are still unresourced. If a patient has a life-threatening infectious complication then bone marrow transplantation is no longer relevant for them.
There are also reports that stem cell transplantation is successful in a limited number of participants
Treatment is depended on the type of glycogen storage disease. E.g. GSD I is typically treated with frequent small meals of carbohydrates and cornstarch to prevent low blood sugar, while other treatments may include allopurinol and human granulocyte colony stimulating factor.
The goal for treatment of GSD type 0 is to avoid hypoglycemia. This is accomplished by avoiding fasting by eating every 3-4 hours during the day. At night, uncooked corn starch can be given because it is a complex glucose polymer. This will be acted on slowly by pancreatic amylase and glucose will be absorbed over a 6 hour period.
Treatment of VAD can be undertaken with both oral and injectable forms, generally as vitamin A palmitate.
- As an oral form, the supplementation of vitamin A is effective for lowering the risk of morbidity, especially from severe diarrhea, and reducing mortality from measles and all-cause mortality. Vitamin A supplementation of children under five who are at risk of VAD can reduce all‐cause mortality by 23%. Some countries where VAD is a public-health problem address its elimination by including vitamin A supplements available in capsule form with national immunization days (NIDs) for polio eradication or measles. Additionally, the delivery of vitamin A supplements, during integrated child health events such as child health days, have helped ensure high coverage of vitamin A supplementation in a large number of least developed countries. Child health events enable many countries in West and Central Africa to achieve over 80% coverage of vitamin A supplementation. According to UNICEF data, in 2013 worldwide, 65% of children between the ages of 6 and 59 months were fully protected with two high-dose vitamin A supplements. Vitamin A capsules cost about US$0.02. The capsules are easy to handle; they do not need to be stored in a refrigerator or vaccine carrier. When the correct dosage is given, vitamin A is safe and has no negative effect on seroconversion rates for oral polio or measles vaccines. However, because the benefit of vitamin A supplements is transient, children need them regularly every four to six months. Since NIDs provide only one dose per year, NIDs-linked vitamin A distribution must be complemented by other programs to maintain vitamin A in children Maternal high supplementation benefits both mother and breast-fed infant: high-dose vitamin A supplementation of the lactating mother in the first month postpartum can provide the breast-fed infant with an appropriate amount of vitamin A through breast milk. However, high-dose supplementation of pregnant women should be avoided because it can cause miscarriage and birth defects.
- Food fortification is also useful for improving VAD. A variety of oily and dry forms of the retinol esters, retinyl acetates, and retinyl palmitate are available for food fortification of vitamin A. Margarine and oil are the ideal food vehicles for vitamin A fortification. They protect vitamin A from oxidation during storage and prompt absorption of vitamin A. Beta-carotene and retinyl acetate or retinyl palmitate are used as a form of vitamin A for vitamin A fortification of fat-based foods. Fortification of sugar with retinyl palmitate as a form of vitamin A has been used extensively throughout Central America. Cereal flours, milk powder, and liquid milk are also used as food vehicles for vitamin A fortification. Genetic engineering is another method of food fortification, and this has been achieved with golden rice, but opposition to genetically modified foods has prevented its use as of July 2012.
- Dietary diversification can also control VAD. Nonanimal sources of vitamin A which contain preformed vitamin A account for greater than 80% of intake for most individuals in the developing world. The increase in consumption of vitamin A-rich foods of animal origin in addition to fruits and vegetables has beneficial effects on VAD. Researchers at the U. S. Agricultural Research Service have been able to identify genetic sequences in corn that are associated with higher levels of beta-carotene, the precursor to vitamin A. They found that breeders can cross certain variations of corn to produce a crop with an 18-fold increase in beta-carotene. Such advancements in nutritional plant breeding could one day aid in the illnesses related to VAD in developing countries.
No cures for lysosomal storage diseases are known, and treatment is mostly symptomatic, although bone marrow transplantation and enzyme replacement therapy (ERT) have been tried with some success. ERT can minimize symptoms and prevent permanent damage to the body. In addition, umbilical cord blood transplantation is being performed at specialized centers for a number of these diseases. In addition, substrate reduction therapy, a method used to decrease the production of storage material, is currently being evaluated for some of these diseases. Furthermore, chaperone therapy, a technique used to stabilize the defective enzymes produced by patients, is being examined for certain of these disorders. The experimental technique of gene therapy may offer cures in the future.
Ambroxol has recently been shown to increase activity of the lysosomal enzyme glucocerebrosidase, so it may be a useful therapeutic agent for both Gaucher disease and Parkinson's disease. Ambroxol triggers the secretion of lysosomes from cells by inducing a pH-dependent calcium release from acidic calcium stores. Hence, relieving the cell from accumulating degradation products is a proposed mechanism by which this drug may help.
Infant mortality is high for patients diagnosed with early onset; mortality can occur within less than 2 months, while children diagnosed with late-onset syndrome seem to have higher rates of survival. Patients suffering from a complete lesion of mut0 have not only the poorest outcome of those suffering from methylaonyl-CoA mutase deficiency, but also of all individuals suffering from any form of methylmalonic acidemia.
There is no known cure for Niemann–Pick type C, nor is there any FDA-standard approved disease modifying treatment. Supportive care is essential and substantially improves the quality of life of people affected by NPC. The therapeutic team may include specialists in neurology, pulmonology, gastroenterology, psychiatrist, orthopedics, nutrition, physical therapy and occupational therapy. Standard medications used to treat symptoms can be used in NPC patients. As patients develop difficulty with swallowing, food may need to be softened or thickened, and eventually, parents will need to consider placement of a gastrostomy tube (g-tube, feeding tube).
An observational study is underway at the National Institutes of Health to better characterize the natural history of NPC and to attempt to identify markers of disease progression.
In 2014 the European Medicines Agency (EMA) granted orphan drug designation to arimoclomol for the treatment of Niemann-Pick type C. This was followed in 2015 by the U.S. Food & Drug Administration (FDA). Dosing in a placebo-controlled phase II/III clinical trial to investigate treatment for Niemann-Pick type C (for patients with both type C1 and C2) using arimoclomol began in 2016. Arimoclomol, which is orally administered, induces the heat shock response in cells and is well tolerated in humans.
Several tests can be done to discover the dysfunction of methylmalonyl-CoA mutase. Ammonia test, blood count, CT scan, MRI scan, electrolyte levels, genetic testing, methylmalonic acid blood test, and blood plasma amino acid tests all can be conducted to determine deficiency.
There is no treatment for complete lesion of the mut0 gene, though several treatments can help those with slight genetic dysfunction. Liver and kidney transplants, and a low-protein diet all help regulate the effects of the diseases.
Since the conversion of dihydroxyphenylserine (Droxidopa; trade name: Northera; also known as L-DOPS, L-threo-dihydroxyphenylserine, L-threo-DOPS and SM-5688), to norepinephrine bypasses the dopamine beta-hydroxylation step of catecholamine synthesis, L-Threo-DOPS is the ideal therapeutic agent. In humans with DβH deficiency, L-Threo-DOPS, a synthetic precursor of noradrenaline, administration has proven effective in dramatic increase of blood pressure and subsequent relief of postural symptoms.
L-DOPS continues to be studied pharmacologically and pharmacokinetically and shows an ability to increase the levels of central nervous system norepinephrine by a significant amount. This is despite the fact that L-DOPS has a relative difficulty crossing the blood-brain barrier when compared to other medications such as L-DOPA. When used concurrently, there is evidence to show that there is increased efficacy as they are both intimately involved and connected to the pathway in becoming norepinephrine.
There is hope and evidence that L-DOPS can be used much more widely to help other conditions or symptoms such as pain, chronic stroke symptoms, and progressive supranuclear palsy, amongst others. Clinically, L-DOPS has been already shown to be helpful in treating a variety of other conditions related to hypotension including the following:
- Diabetes induced orthostatic hypotension
- Dialysis-induced hypotension
- Orthostatic intolerance
- Familial amyloidotic polyneuropathy
- Spinal Cord Injury related hypotension
Empirical evidence of mild effectiveness has been reported using mineralocorticoids or adrenergic receptor agonists as therapies.
Other medications that can bring relief to symptoms include:
- phenylpropanolamine- due to pressor response to vascular α-adrenoceptors
- indomethacin
Vitamin C (ascorbic acid) is also a required cofactor for the Dopamine beta hydroxylase enzyme. Recent research has shown that vitamin C rapidly catalyzes the conversion of dopamine to norepinephrine through stimulation of the dopamine beta hydroxylase enzyme.
In terms of treatment a 2013 review indicates that colchicine can be used for DIRA. Additionally there are several other management options such as anakinra, which blocks naturally occurring IL-1, this according to a 2016 pediatric textbook.