Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Non-selective beta-blockers are the most effective in reducing the frequency and severity of PSH episodes. They help decrease the effect of circulating catecholamines and lower metabolic rates, which are high in patients during PSH episodes. Beta-blockers also help in reducing fever, diaphoresis, and in some cases dystonia. Propanolol is a common beta-blocker administered due to the fact that it penetrates the blood-brain barrier relatively well. Typically it is administered in doses of twenty milligrams to sixty milligrams every four to six hours in the treatment of PSH.
The two most common medications used in the treatment of paroxysmal sympathetic hyperactivity are morphine sulfate and beta-blockers. Morphine is useful in helping halt episodes that have started to occur. Beta-blockers are helpful in preventing the occurrence of 'sympathetic storms'. Other drugs that have been used and have in some cases been helpful are dopamine agonists, other various opiates, benzodiazepines, clonidine, and baclofen. Chlorpromazine and haloperidol, both dopamine antagonists, in some cases have worsened PSH symptoms. These drugs are in use currently for treatment; exact pathways are not known and wide-range helpfulness is speculative.
The most commonly effective treatment is clonazepam, which leads to the increased efficacy of another inhibitory neurotransmitter, GABA. There are anecdotal reports of the use of Levetiracetam in genetic and acquired hyperekplexia. During attacks of hypertonia and apnea, the limbs and head may be flexed towards the trunk in order to dissipate the symptoms. This is named the Vigevano maneuver after the doctor who invented it.
In terms of beta-mannosidosis treatment there is none currently, individuals that exhibit muscle weakness or seizures are treated based on the symptoms(since there's no cure)
Since the conversion of dihydroxyphenylserine (Droxidopa; trade name: Northera; also known as L-DOPS, L-threo-dihydroxyphenylserine, L-threo-DOPS and SM-5688), to norepinephrine bypasses the dopamine beta-hydroxylation step of catecholamine synthesis, L-Threo-DOPS is the ideal therapeutic agent. In humans with DβH deficiency, L-Threo-DOPS, a synthetic precursor of noradrenaline, administration has proven effective in dramatic increase of blood pressure and subsequent relief of postural symptoms.
L-DOPS continues to be studied pharmacologically and pharmacokinetically and shows an ability to increase the levels of central nervous system norepinephrine by a significant amount. This is despite the fact that L-DOPS has a relative difficulty crossing the blood-brain barrier when compared to other medications such as L-DOPA. When used concurrently, there is evidence to show that there is increased efficacy as they are both intimately involved and connected to the pathway in becoming norepinephrine.
There is hope and evidence that L-DOPS can be used much more widely to help other conditions or symptoms such as pain, chronic stroke symptoms, and progressive supranuclear palsy, amongst others. Clinically, L-DOPS has been already shown to be helpful in treating a variety of other conditions related to hypotension including the following:
- Diabetes induced orthostatic hypotension
- Dialysis-induced hypotension
- Orthostatic intolerance
- Familial amyloidotic polyneuropathy
- Spinal Cord Injury related hypotension
Empirical evidence of mild effectiveness has been reported using mineralocorticoids or adrenergic receptor agonists as therapies.
Other medications that can bring relief to symptoms include:
- phenylpropanolamine- due to pressor response to vascular α-adrenoceptors
- indomethacin
Vitamin C (ascorbic acid) is also a required cofactor for the Dopamine beta hydroxylase enzyme. Recent research has shown that vitamin C rapidly catalyzes the conversion of dopamine to norepinephrine through stimulation of the dopamine beta hydroxylase enzyme.
Untreated individuals with DβH deficiency should avoid hot environments, strenuous exercise, standing still, and dehydration.
In some cases, a pancreas transplant can restore proper glucose regulation. However, the surgery and accompanying immunosuppression required may be more dangerous than continued insulin replacement therapy, so is generally only used with or some time after a kidney transplant. One reason for this is that introducing a new kidney requires taking immunosuppressive drugs such as cyclosporine, which allows the introduction of a new pancreas to a person with diabetes without any additional immunosuppressive therapy. However, pancreas transplants alone may be beneficial in people with extremely labile type 1 diabetes mellitus.
The most common sexual issues in diabetic males are problems with erections and ejaculation: "With diabetes, blood vessels supplying the penis’s erectile tissue can get hard and narrow, preventing the adequate blood supply needed for a firm erection. The nerve damage caused by poor blood glucose control can also cause ejaculate to go into the bladder instead of through the penis during ejaculation, called retrograde ejaculation. When this happens, semen leaves the body in the urine." Another cause for erectile dysfunction are the reactive oxygen species created as a result of the disease. Antioxidants can be used to help combat this.
Low-protein food is recommended for this disorder, which requires food products low in particular types of amino acids (e.g., methionine).
Use of intranasal decongestants (such as oxymetazoline) for more than three days leads to tachyphylaxis of response and rebound congestion, caused by alpha-adrenoceptor mediated down-regulation and desensitization of response. Oxymetazoline-induced tachyphylaxis and rebound congestion are reversed by intranasal fluticasone.
In a patient fully withdrawn from opioids, going back to an intermittent schedule or maintenance dosing protocol, a fraction of the old tolerance level will rapidly develop, usually starting two days after therapy is resumed and, in general, leveling off after day 7. Whether this is caused directly by opioid receptors modified in the past or affecting a change in some metabolic set-point is unclear. Increasing the dose will usually restore efficacy; relatively rapid opioid rotation may also be of use if the increase in tolerance continues.
No specific cure has been discovered for homocystinuria; however, many people are treated using high doses of vitamin B (also known as pyridoxine). Slightly less than 50% respond to this treatment and need to take supplemental vitamin B for the rest of their lives. Those who do not respond require a Low-sulfur diet (especially monitoring methionine), and most will need treatment with trimethylglycine. A normal dose of folic acid supplement and occasionally adding cysteine to the diet can be helpful, as glutathione is synthesized from cysteine (so adding cysteine can be important to reduce oxidative stress).
Betaine (N,N,N-trimethylglycine) is used to reduce concentrations of homocysteine by promoting the conversion of homocysteine back to methionine, i.e., increasing flux through the re-methylation pathway independent of folate derivatives (which is mainly active in the liver and in the kidneys).The re-formed methionine is then gradually removed by incorporation into body protein. The methionine that is not converted into protein is converted to S-adenosyl-methionine which goes on to form homocysteine again. Betaine is, therefore, only effective if the quantity of methionine to be removed is small. Hence treatment includes both betaine and a diet low in methionine. In classical homocystinuria (CBS, or cystathione beta synthase deficiency), the plasma methionine level usually increases above the normal range of 30 micromoles/L and the concentrations should be monitored as potentially toxic levels (more than 400 micromoles/L) may be reached.
About 80% of all LADA patients initially misdiagnosed with type 2 (and who have GAD antibodies) will become insulin-dependent within 3 to 15 years (according to differing LADA sources).
The treatment for Type 1 diabetes/LADA is exogenous insulin to control glucose levels, prevent further destruction of residual beta cells, reduce the possibility of diabetic complications, and prevent death from diabetic ketoacidosis (DKA). Although LADA may appear to initially respond to similar treatment (lifestyle and medications) as type 2 diabetes, it will not halt or slow the progression of beta cell destruction, and people with LADA will eventually become insulin-dependent. People with LADA have insulin resistance similar to long-term type 1 diabetes; some studies showed that people with LADA have less insulin resistance, compared with those with type 2 diabetes; however, others have not found a difference.
Carotenemia and carotenoderma is in itself harmless, and does not require treatment. In primary carotenoderma, when the use of high quantities of carotene is discontinued the skin color will return to normal. It may take up to several months, however, for this to happen. Infants with this condition should not be taken off prescribed vitamin supplements unless advised to do so by the child's pediatrician.
As to underlying disorders in secondary carotinemia and carotenoderma, treatment depends wholly on the cause.
IST has been treated both pharmacologically and invasively, with varying degrees of success. IST, in and of itself, is not indicative of higher rates of mortality, and non-treatment is an option chosen by many if they have minimal symptoms.
Some types of medication tried by cardiologists and other physicians include: beta blockers, selective sinus node I channel inhibitors (ivabradine), calcium channel blockers and antiarrhythmic agents. Some SSRI drugs are also occasionally tried and also treatments more commonly used to treat postural orthostatic tachycardia syndrome such as fludrocortisone. This approach is very much "trial-and-error". Patients with IST are often intolerant to beta blockers. A new selective sinus node inhibitor ivabradine is also being used to treat IST.
Invasive treatments include forms of catheter ablation such as sinus node modification (selective ablation of the sinus node), complete sinus node ablation (with associated implantation of a permanent artificial pacemaker) and AV node ablation in very resistant cases (creation of iatrogenic complete heart block, necessitating implantation of a permanent artificial pacemaker).
However invasive treatments can also make the symptoms worse, not cure it. Treatment should be chosen with care as the patient could become in need of a pacemaker or have more extensive symptoms.
A prenatal diagnosis was made by Kleijer et al. in 1979 by measuring beta-galactosidase and neuraminidase activities in cultured amniotic fluid cells.
Arrhythmia termination involves stopping a life-threatening arrhythmia once it has already occurred. One effective form of arrhythmia termination in individuals with LQTS is placement of an implantable cardioverter-defibrillator (ICD). Also, external defibrillation can be used to restore sinus rhythm. ICDs are commonly used in patients with fainting episodes despite beta blocker therapy, and in patients having experienced a cardiac arrest.
With better knowledge of the genetics underlying LQTS, more precise treatments hopefully will become available.
In addition to any issues of treatment compliance, and maximised corticosteroids (inhaled or oral) and beta agonist, brittle asthma treatment also involves for type 1 additional subcutaneous injections of beta2 agonist and inhalation of long acting beta-adrenoceptor agonist, whilst type 2 needs allergen avoidance and self-management approaches. Since catastrophic attacks are unpredictable in type 2, patients may display identification of the issue, such as a MedicAlert bracelet, and carry an epinephrine autoinjector.
Galactosialidosis is a lysosomal storage disease.This condition is rare and most cases have been in the juvenile/adult group of patients. An infantile form has been described.
Arrhythmia suppression involves the use of medications or surgical procedures that attack the underlying cause of the arrhythmias associated with LQTS. Since the cause of arrhythmias in LQTS is EADs, and they are increased in states of adrenergic stimulation, steps can be taken to blunt adrenergic stimulation in these individuals. These include administration of beta receptor blocking agents, which decreases the risk of stress-induced arrhythmias. Beta blockers are an effective treatment for LQTS caused by LQT1 and LQT2.
Genotype and QT interval duration are independent predictors of recurrence of life-threatening events during beta-blocker therapy. To be specific, the presence of QTc >500 ms and LQT2 and LQT3 genotype are associated with the highest incidence of recurrence. In these patients, primary prevention with use of implantable cardioverter-defibrillators can be considered.
- Potassium supplementation: If the potassium content in the blood rises, the action potential shortens, so increasing potassium concentration could minimize the occurrence of arrhythmias. It should work best in LQT2, since the hERG channel is especially sensitive to potassium concentration, but the use is experimental and not evidence-based.
- Mexiletine, a sodium channel blocker: In LQT3, the sodium channel does not close properly. Mexiletine closes these channels and is believed to be usable when other therapies fail. Theoretically, mexiletine could be useful for people with this form of LQTS, but the medication is currently under study for this application and its use is not currently recommended.
- Amputation of the cervical sympathetic chain (left stellectomy). This therapy is typically reserved for LQTS caused by JLNS, but may be used as an add-on therapy to beta blockers in certain cases. In most cases, modern therapy favors ICD implantation if beta blocker therapy fails.
If a person with heat exhaustion gets medical treatment, Emergency Medical Technicians (EMTs) or doctors and/or nurses may also:
- Give them supplemental oxygen
- Give them intravenous fluids and electrolytes if they are too confused to drink and/or are vomiting
The chances of drug resistance can sometimes be minimized by using multiple drugs simultaneously. This works because individual mutations can be independent and may tackle only one drug at a time; if the individuals are still killed by the other drugs, then the mutations cannot persist. This was used successfully in tuberculosis. However, cross resistance where mutations confer resistance to two or more treatments can be problematic.
For antibiotic resistance, which represents a widespread problem nowadays, drugs designed to block the mechanisms of bacterial antibiotic resistance are used. For example, bacterial resistance against beta-lactam antibiotics (such as penicillins and cephalosporins) can be circumvented by using antibiotics such as nafcillin that are not susceptible to destruction by certain beta-lactamases (the group of enzymes responsible for breaking down beta-lactams). Beta-lactam bacterial resistance can also be dealt with by administering beta-lactam antibiotics with drugs that block beta-lactamases such as clavulanic acid so that the antibiotics can work without getting destroyed by the bacteria first. Recently, researchers have recognized the need for new drugs that inhibit bacterial efflux pumps, which cause resistance to multiple antibiotics such as beta-lactams, quinolones, chloramphenicol, and trimethoprim by sending molecules of those antibiotics out of the bacterial cell. Sometimes a combination of different classes of antibiotics may be used synergistically; that is, they work together to effectively fight bacteria that may be resistant to one of the antibiotics alone.
Destruction of the resistant bacteria can also be achieved by phage therapy, in which a specific bacteriophage (virus that kills bacteria) is used.
There is research being done using antimicrobial peptides. In the future, there is a possibility that they might replace novel antibiotics.
The GM1 gangliosidoses (or GM1 gangliosidos"i"s) are caused by a deficiency of beta-galactosidase, with resulting abnormal storage of acidic lipid materials in cells of the central and peripheral nervous systems, but particularly in the nerve cells.
GM1 Gangliosidoses are inherited, autosomal recessive sphingolipidoses, resulting from marked deficiency of Acid Beta Galactosidase.
Recent research suggests that sulfur amino acids have a protective effect against the toxicity of ODAP.
Eating the chickling pea with grain having high concentrations of sulphur-based amino acids reduces the risk of lathyrism if grain is available. Food preparation is also an important factor. Toxic amino acids are readily soluble in water and can be leached. Bacterial (lactic acid) and fungal (tempeh) fermentation is useful to reduce ODAP content. Moist heat (boiling, steaming) denatures protease inhibitors which otherwise add to the toxic effect of raw grasspea through depletion of protective sulfur amino acids. During times of drought and famine, water for steeping and fuel for boiling is frequently also in short supply. Poor people sometimes know how to reduce the chance of developing lathyrism but face a choice between risking lathyrism or starvation.
The underlying cause for excessive consumption of grasspea is a lack of alternative food sources. This is a consequence of poverty and political conflict. The prevention of lathyrism is therefore a socio-economic challenge.
Treatment is typically achieved via diet and exercise, although metformin may be used to reduce insulin levels in some patients (typically where obesity is present). A referral to a dietician is beneficial. Another method used to lower excessively high insulin levels is cinnamon as was demonstrated when supplemented in clinical human trials.
A low carbohydrate diet is particularly effective in reducing hyperinsulinism.
A healthy diet that is low in simple sugars and processed carbohydrates, and high in fiber, and vegetable protein is often recommended. This includes replacing white bread with whole-grain bread, reducing intake of foods composed primarily of starch such as potatoes, and increasing intake of legumes and green vegetables, particularly soy.
Regular monitoring of weight, blood sugar, and insulin are advised, as hyperinsulinemia may develop into diabetes mellitus type 2.
It has been shown in many studies that physical exercise improves insulin sensitivity. The mechanism of exercise on improving insulin sensitivity is not well understood however it is thought that exercise causes the glucose receptor GLUT4 to translocate to the membrane. As more GLUT4 receptors are present on the membrane more glucose is taken up into cells decreasing blood glucose levels which then causes decreased insulin secretion and some alleviation of hyperinsulinemia. Another proposed mechanism of improved insulin sensitivity by exercise is through AMPK activity. The beneficial effect of exercise on hyperinsulinemia was shown in a study by Solomon et al. (2009), where they found that improving fitness through exercise significantly decreases blood insulin concentrations.