Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Though BLSII is an attractive candidate for gene therapy, bone marrow transplant is currently the only treatment.
Bone marrow transplant may be possible for Severe Combined Immune Deficiency and other severe immunodeficiences.
Virus-specific T-Lymphocytes (VST) therapy is used for patients who have received hematopoietic stem cell transplantation that has proven to be unsuccessful. It is a treatment that has been effective in preventing and treating viral infections after HSCT. VST therapy uses active donor T-cells that are isolated from alloreactive T-cells which have proven immunity against one or more viruses. Such donor T-cells often cause acute graft-versus-host disease (GVHD), a subject of ongoing investigation. VSTs have been produced primarily by ex-vivo cultures and by the expansion of T-lymphocytes after stimulation with viral antigens. This is carried out by using donor-derived antigen-presenting cells. These new methods have reduced culture time to 10–12 days by using specific cytokines from adult donors or virus-naive cord blood. This treatment is far quicker and with a substantially higher success rate than the 3–6 months it takes to carry out HSCT on a patient diagnosed with a primary immunodeficiency. T-lymphocyte therapies are still in the experimental stage; few are even in clinical trials, none have been FDA approved, and availability in clinical practice may be years or even a decade or more away.
The treatment of primary immunodeficiencies depends foremost on the nature of the abnormality. Somatic treatment of primarily genetic defects is in its infancy. Most treatment is therefore passive and palliative, and falls into two modalities: managing infections and boosting the immune system.
Reduction of exposure to pathogens may be recommended, and in many situations prophylactic antibiotics or antivirals may be advised.
In the case of humoral immune deficiency, immunoglobulin replacement therapy in the form of intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG) may be available.
In cases of autoimmune disorders, immunosuppression therapies like corticosteroids may be prescribed.
Treatment is most commonly directed at autoimmune disease and may be needed to treat bulky lymphoproliferation. First line therapies include corticosteroids (very active but toxic with chronic use), and IVIgG, which are not as effective as in other immune cytopenia syndromes.
Second line therapies include: mycophenolate mofetil (cellcept) which inactivates inosine monophosphate, most studied in clinical trials with responses varying (relapse, resolution, partial response). It does not affect lymphoproliferation or reduce DNTs, with no drug-drug interactions. This treatment is commonly used agent in patients who require chronic treatment based on tolerance and efficacy. It may cause hypogammaglobulinemia (transient) requiring IVIgG replacement.
Sirolimus (rapamycin, rapamune) which is a mTOR (mammalian target of rapamycin) inhibitor can be active in most patients and can in some cases lead to complete or near-complete resolution of autoimmune disease (>90%) With this treatment most patients have complete resolution of lymphoproliferation, including lymphadenopathy and splenomegaly (>90%) and have elimination of peripheral blood DNTs. Sirolimus may not be as immune suppressive in normal lymphocytes as other agents. Some patients have had improvement in immune function with transition from cellcept to rapamycin and it has not been reported to cause hypogammaglobulinemia. Hypothetically, Sirolimus may have lower risk of secondary cancers as opposed to other immune suppressants and requires therapeutic drug monitoring. It is the second most commonly used agent in patients that require chronic therapy. It is mostly well tolerated (though side effects include mucositis, diarrhea, hyperlipidemia, delayed wound healing) with drug-drug interactions. It has better activity against autoimmune disease and lymphoproliferation than mycophenolate mofetil and other drugs; however, sirolimus requires therapeutic drug monitoring and can cause mucositis. A risk with any agent in pre-cancerous syndrome as immune suppression can decreased tumor immunosurvellence. Its mTOR inhibitors active against lymphomas, especially EBV+ lymphomas. The Goal serum trough is 5-15 ng/ml and can consider PCP prophylaxis but usually not needed.
Other treatments may include drugs like Fansidar, mercaptopurine: More commonly used in Europe. Another is rituximab but this can cause lifelong hypogammaglobulinemia and a splenectomy but there is a >30% risk of pneumococcal sepsis even with vaccination and antibiotic prophylaxis
Because the CD18 gene has been cloned and sequenced, this disorder is a potential candidate for gene therapy.
A number of types of radiation therapy may be used including total skin electron therapy. While this therapy does not generally result in systemic toxic effects it can produce side effects involving the skin. It is only avaliable at a few institutions.
Treatment typically includes some combination of photodynamic therapy, radiation therapy, chemotherapy, and biologic therapy.
Treatments are often used in combination with phototherapy and chemotherapy, though pure chemotherapy is rarely used today. No single treatment type has revealed clear-cut benefits in comparison to others, treatment for all cases remains problematic.
No treatment is available for most of these disorders. Mannose supplementation relieves the symptoms in PMI-CDG (CDG-Ib) for the most part, even though the hepatic fibrosis may persist. Fucose supplementation has had a partial effect on some SLC35C1-CDG (CDG-IIc or LAD-II) patients.
Currently there is no cure for these disorders. Medical care is directed at treating systemic conditions and improving the person's quality of life. Physical therapy and daily exercise may delay joint problems and improve the ability to move.
Changes to the diet will not prevent disease progression, but limiting milk, sugar, and dairy products has helped some individuals experiencing excessive mucus.
Surgery to remove tonsils and adenoids may improve breathing among affected individuals with obstructive airway disorders and sleep apnea. Sleep studies can assess airway status and the possible need for nighttime oxygen. Some patients may require surgical insertion of an endotrachial tube to aid breathing. Surgery can also correct hernias, help drain excessive cerebrospinal fluid from the brain, and free nerves and nerve roots compressed by skeletal and other abnormalities. Corneal transplants may improve vision among patients with significant corneal clouding.
Enzyme replacement therapy (ERT) are currently in use or are being tested. Enzyme replacement therapy has proven useful in reducing non-neurological symptoms and pain. Currently BioMarin Pharmaceutical produces enzyme replacement therapies for MPS type I and VI. Aldurazyme is an enzymatic replacement therapy for alpha-L-iduronidase produced by BioMarin for use in Type I MPS. In July 2006, the United States Food and Drug Administration approved a synthetic version of I2S produced by Shire Pharmaceuticals Group, called Elaprase, as a treatment for MPS type II (Hunter syndrome).
Bone marrow transplantation (BMT) and umbilical cord blood transplantation (UCBT) have had limited success in treating the mucopolysaccharidoses. Abnormal physical characteristics, except for those affecting the skeleton and eyes, may be improved, but neurologic outcomes have varied. BMT and UCBT are high-risk procedures and are usually performed only after family members receive extensive evaluation and counseling.
For information on clinical trials visit Clinical Trials Search
Enzyme replacement therapies are currently in use. BioMarin Pharmaceutical provides therapeutics for mucopolysaccaradosis type I (MPS I), by manufacturing laronidase (Aldurazyme), commercialized by Genzyme. Enzyme replacement therapy has proven useful in reducing non-neurological symptoms and pain.
Bone marrow transplantation (BMT) and umbilical cord blood transplantation (UCBT) can be used as treatments for MPS. Abnormal physical characteristics, except for those affecting the skeleton and eyes, can be improved, and neurologic degeneration can often be halted. BMT and UCBT are high-risk procedures with high rates of morbidity and mortality. No cure for MPS I is known.
Immunosuppressive therapy may be used in "type I" of this condition, ketoconazole can be used for "autoimmune polyendocrine syndrome type I" under certain conditions The component diseases are managed as usual, the challenge is to detect the possibility of any of the syndromes, and to anticipate other manifestations. For example, in a person with known Type 2 autoimmune polyendocrine syndrome but no features of Addison's disease, regular screening for antibodies against 21-hydroxylase may prompt early intervention and hydrocortisone replacement to prevent characteristic crises
An example antibody for use in immunotherapy is Rituximab. Rituximab has specific use in treatment of NLPHL as it is a chimeric monoclonal antibody against the protein CD20. Studies indicate Rituximab offers potential in relapsed or refractory patients, and also in front-line treatment especially in advanced stages. Because of a tendency for relapse, maintenance treatment such as every 6 months for 2 years is suggested. Rituximab has been shown to improve patient outcomes after histological transformation.
Possible options such as anthracycline-containing regimens include ABVD, BEACOPP and CHOP. Results of a trial with COPP/ABV in children suggested positive results with chemotherapy alone are possible without the need for radiation therapy. Optimal chemotherapy is a topic for debate, for example there is evidence of support for treatment with R-CHOP instead of ABVD, results showing high rates (40%) of relapse after 10 years since ABVD chemotherapy. BEACOPP has higher reported toxicity risk.
Lymphocyte-variant hypereosinophilia usually takes a benign and indolent course. Long term treatment with corticosteroids lowers blood eosinophil levels as well as suppresses and prevents complications of the disease in >80% of cases. However, signs and symptoms of the disease recur in virtually all cases if corticosteroid dosages are tapered in order to reduce the many adverse side effects of corticosteroids. Alternate treatments used to treat corticosteroid resistant disease or for use as corticosteroid-sparing substitutes include interferon-α or its analog, Peginterferon alfa-2a, Mepolizumab (an antibody directed against IL-5), Ciclosporin (an Immunosuppressive drug), imatinib (an inhibitor of tyrosine kinases; numerous tyrosine kinase cell signaling proteins are responsible for the growth and proliferation of eosinophils {see clonal eosinophilia}), methotrexate and Hydroxycarbamide (both are chemotherapy and immunosuppressant drugs), and Alemtuzumab (a antibody that binds to the CD52 antigen on mature lymphocytes thereby marking them for destruction by the body). The few patients who have been treated with these alternate drugs have exhibited good responses in the majority of instances. Reslizumab, a newly developed antibody directed against interleukin 5 that has been successfully used to treat 4 patients with the hypereosinophilic syndrome, may also be of use for lymphocyte-variant eosinophilia. Patients suffering minimal or no disease complications have gone untreated.
In 10% to 25% of patients, mostly 3 to 10 years after initical diagnosis, the indolent course of lymphocyte-variant hypereosinophilia changes. Patients exhibit rapid increases in lymphadenopathy, spleen size, and blood cell numbers, some cells of which take on the appearance of immature and/or malignant cells. Their disease soon thereafter escalates to an angioimmunoblastic T-cell lymphoma, peripheral T cell lymphoma, Anaplastic large-cell lymphoma (which unlike most lymphomas of this type is Anaplastic lymphoma kinase-negative), or Cutaneous T cell lymphoma. The malignantly transformed disease is aggressive and has a poor prognosis. Recommended treatment includes chemotherapy with Fludarabine, Cladribine, or the CHOP combination of drugs followed by bone marrow transplantation.
Most patients with T-cell prolymphocytic leukemia require immediate treatment.
T-cell prolymphocytic leukemia is difficult to treat, and it does not respond to most available chemotherapeutic drugs. Many different treatments have been attempted, with limited success in certain patients: purine analogues (pentostatin, fludarabine, cladribine), chlorambucil, and various forms of combination chemotherapy regimens, including cyclophosphamide, doxorubicin, vincristine, prednisone (CHOP), etoposide, bleomycin (VAPEC-B).
Alemtuzumab (Campath), an anti-CD52 monoclonal antibody that attacks white blood cells, has been used in treatment with greater success than previous options. In one study of previously treated people with T-PLL, people who had a complete response to alemtuzumab survived a median of 16 months after treatment.
Some patients who successfully respond to treatment also undergo stem cell transplantation to consolidate the response.
No cures for lysosomal storage diseases are known, and treatment is mostly symptomatic, although bone marrow transplantation and enzyme replacement therapy (ERT) have been tried with some success. ERT can minimize symptoms and prevent permanent damage to the body. In addition, umbilical cord blood transplantation is being performed at specialized centers for a number of these diseases. In addition, substrate reduction therapy, a method used to decrease the production of storage material, is currently being evaluated for some of these diseases. Furthermore, chaperone therapy, a technique used to stabilize the defective enzymes produced by patients, is being examined for certain of these disorders. The experimental technique of gene therapy may offer cures in the future.
Ambroxol has recently been shown to increase activity of the lysosomal enzyme glucocerebrosidase, so it may be a useful therapeutic agent for both Gaucher disease and Parkinson's disease. Ambroxol triggers the secretion of lysosomes from cells by inducing a pH-dependent calcium release from acidic calcium stores. Hence, relieving the cell from accumulating degradation products is a proposed mechanism by which this drug may help.
Bare lymphocyte syndrome is a condition caused by mutations in certain genes of the major histocompatibility complex or involved with the processing and presentation of MHC molecules. It is a form of severe combined immunodeficiency.
Currently Aggressive NK-cell leukemia, being a subtype of PTCL, is treated similarly to B-cell lymphomas. However, in recent years, scientists have developed techniques to better recognize the different types of lymphomas, such as PTCL. It is now understood that PTCL behaves differently from B-cell lymphomas and therapies are being developed that specifically target these types of lymphoma. Currently, however, there are no therapies approved by the U.S. Food and Drug Administration (FDA) specifically for PTCL. Anthracycline-containing chemotherapy regimens are commonly offered as the initial therapy. Some patients may receive a stem cell transplant. Novel approaches to the treatment of PTCL in the relapsed or refractory setting are under investigation.
CD25 deficiency or interleukin 2 receptor alpha deficiency is an immunodeficiency disorder associated with mutations in the interleukin 2 receptor alpha (CD25) (IL2RA) gene. The mutations cause expression of a defective α chain or complete absence thereof, an essential part of high-affinity interleukin-2 (IL-2) receptors. The result is a syndrome described as IPEX-like or a SCID.
In one patient, deficiency of CD25 on CD4+ lymphocytes caused significantly impaired sensitivity to IL-2. This was demonstrated by a lack of measurable response in anti-inflammatory interleukin-10 (IL-10) secretion to low-dose IL-2 incubation. Greatly reduced IL-10 secretion compared to healthy humans results in a syndrome comparable to IPEX syndrome, a type of autoimmunity which is caused by FoxP3 transcription factor dysfunction. In addition to IPEX-like symptoms, CD25 deficiency increases susceptibility to viral infections and possibly fungal and bacterial infections.
As IL-2 is an important inducer of lymphocyte proliferation, the absence of highly sensitive IL-2 receptors may also significantly hinder activation and clonal expansion of CD8+ and CD4+ lymphocytes and NK cells. One case also reported the absence of CD1, a MHC-like glycoprotein involved in the presentation of lipid antigens to T cells, in a CD25 deficient patient. Furthermore, chronic upregulation of anti-apoptotic Bcl-2 in thymocytes was also described possibly allowing autoreactive T cells to escape deletion.
Hypergammaglobulinemia is a medical condition with elevated levels of gamma globulin.
It is a type of immunoproliferative disorder.
Macrolide antibiotics, such as erythromycin, are an effective treatment for DPB when taken regularly over an extended period of time. Clarithromycin or roxithromycin are also commonly used. The successful results of macrolides in DPB and similar lung diseases stems from managing certain symptoms through immunomodulation (adjusting the immune response), which can be achieved by taking the antibiotics in low doses. Treatment consists of daily oral administration of erythromycin for two to three years, an extended period that has been shown to dramatically improve the effects of DPB. This is apparent when an individual undergoing treatment for DPB, among a number of disease-related remission criteria, has a normal neutrophil count detected in BAL fluid, and blood gas (an arterial blood test that measures the amount of oxygen and carbon dioxide in the blood) readings show that free oxygen in the blood is within the normal range. Allowing a temporary break from erythromycin therapy in these instances has been suggested, to reduce the formation of macrolide-resistant "P. aeruginosa". However, DPB symptoms usually return, and treatment would need to be resumed. Although highly effective, erythromycin may not prove successful in all individuals with the disease, particularly if macrolide-resistant "P. aeruginosa" is present or previously untreated DPB has progressed to the point where respiratory failure is occurring.
With erythromycin therapy in DPB, great reduction in bronchiolar inflammation and damage is achieved through suppression of not only neutrophil proliferation, but also lymphocyte activity and obstructive mucus and water secretions in airways. The antibiotic effects of macrolides are not involved in their beneficial effects toward reducing inflammation in DPB. This is evident because the treatment dosage is much too low to fight infection, and in DPB cases with the occurrence of macrolide-resistant "P. aeruginosa", erythromycin therapy still reduces inflammation.
A number of factors are involved in suppression of inflammation by erythromycin and other macrolides. They are especially effective at inhibiting the proliferation of neutrophils, by diminishing the ability of interleukin 8 and leukotriene B4 to attract them. Macrolides also reduce the efficiency of adhesion molecules that allow neutrophils to stick to bronchiolar tissue linings. Mucus production in the airways is a major culprit in the morbidity and mortality of DPB and other respiratory diseases. The significant reduction of inflammation in DPB attributed to erythromycin therapy also helps to inhibit the production of excess mucus.
Treatment for autosomal dominant porencephaly type I is based on the symptoms that an individual is experiencing - for example, treatment of seizures with anticonvulsants. It is particularly important for individuals with this disorder and hypertension to control their blood pressure, as they are at higher risk of stroke. Other stroke prevention treatments include avoiding anticoagulants, smoking, and situations that may lead to head trauma.
Café au lait spots can be removed with lasers. Results are variable as the spots are often not completely removed or can come back after treatment. Often, a test spot is treated first to help predict the likelihood of treatment success.
Hypergammaglobulinemia is a condition that is characterized by the increased levels of a certain immunoglobulin in the blood serum. The name of the disorder refers to an excess of proteins after serum protein electrophoresis (found in the gammaglobulin region).
Most hypergammaglobulinemias are caused by an excess of immunoglobulin M (IgM), because this is the default immunoglobulin type prior to class switching. Some types of hypergammaglobulinemia are actually caused by a deficiency in the other major types of immunoglobulins, which are IgA, IgE and IgG.
There are 5 types of hypergammaglobulinemias associated with hyper IgM.
MeSH considers hyper IgM syndrome to be a form of dysgammaglobulinemia, not a form of hypergammaglobulinemia .
Surgery is the mainstay of treatment for thymoma. If the tumor is apparently invasive and large, preoperative (neoadjuvant) chemotherapy and/or radiotherapy may be used to decrease the size and improve resectability, before surgery is attempted. When the tumor is an early stage (Masaoka I through IIB), no further therapy is necessary. Removal of the thymus in adults does not appear to induce immune deficiency. In children, however, postoperative immunity may be abnormal and vaccinations for several infectious agents are recommended. Invasive thymomas may require additional treatment with radiotherapy and chemotherapy (cyclophosphamide, doxorubicin and cisplatin).. Recurrences of thymoma are described in 10-30% of cases up to 10 years after surgical resection, and in the majority of cases also pleural recurrences can be removed. Recently, surgical removal of pleural recurrences can be followed by hyperthermic intrathoracic perfusion chemotherapy or Intrathoracic hyperthermic perfused chemotherapy (ITH).