Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Necrotic ring spot can be managed through chemical and cultural controls. Cultural control includes the use of ammonium sulfate or other acidifying fertilizers to suppress the pathogen by lowering the pH of the soil to between 6.0 and 6.2. The more acidic soil discourages the activity of "O. korrae" (9) When reducing pH to these levels, additional manganese applications should be undertaken to compensate for lower pH. As of now, there are only two resistant cultivars of bluegrass, which are ‘Riviera’, and ‘Patriot’ (9). One component of their resistance could be that they are tolerant to low temperature, because the grass is more susceptible to the pathogen under colder temperatures(8). In addition, reducing watering inputs and growing turf on well drained soils can lessen disease symptoms.
Many different fungicides are used to control the pathogen, Fenarimol, Propiconazole, Myclobutanil, and Azoxystrobin (8). Historically, Fenarimol and Myclobutanil were predominantly used (14). In a study where diluted pesticides were sprayed throughout infested test plots, Fenarimol was found to be the most effective with a 94.6% reduction of the disease. Myclobutanil also decreased the amount of disease, but only by 37.7% (8). Myclobutanil is generally recognized as a very weakly acting demethylation inhibitor (DMI) fungicide and fenarimol is no longer registered for turf so a number of other DMI fungicides have been employed successfully, including Propiconazole, Tebuconazole, Metconazole and others. Pyraclostrobin and Fluoxastrobin have also been used to control the pathogen.
Currently, the most effective treatment is transferring the affected fish to a freshwater bath for a period of 2 to 3 hours. This is achieved by towing the sea cages into fresh water, or pumping the fish from the sea cage to a tarp filled with fresh water. Mortality rates have been lowered by adding Levamisole to the water until the saturation is above 10ppm. Due to the difficulty and expense of treatment, the productivity of salmon aquaculture is limited by access to a source of fresh water. Chloramine and chlorine dioxide have also been used. Other potential in-feed treatments such as immunosupportive-based feeds, mucolytic compounds such as L-cysteine ethyl ester and the parasticide bithionol have been tested with some success although not developed for commercial use.
Treatment is symptomatic.
Treatment does not require a doctor's attention unless the case is severe, with most affected using a topical anti-itch cream (diphenhydramine) and a cortisone solution (hydrocortisone). Do not scratch the area, and avoid any clothing that may irritate the affected area; scratching will result in localized swelling and intense itching.
Upon exiting the water, prompt removal of swim clothing (while it is still wet) followed by a warm sea-water shower largely negates the risk of Seabather's eruption even in endemic areas. A hot freshwater shower with soap (paying particular attention to the hair and areas covered by the suit) is a somewhat less-effective alternative if uncontaminated seawater is unavailable. The contaminated swimsuit should be machine washed with laundry soap and dried in warm air.
Animals can be affected as well, and a cortisone solution for humans can be used on dogs.
The cat should be taken to a veterinarian. The most suspected cause of skin problems in cats will be fleas. Other causes of over-grooming are not as easily ascertained. As household antiseptics are known to be toxic to cats, veterinary antiseptics for cats can be used to treat open sores, if they do occur. Sores can also be treated with cream, oral or injected anti-inflammatories, however if the problem continues to recur it may be more cost effective to subject the cat to laboratory testing early on. It may be difficult to keep a clean dressing on a cat's belly, and an anti-lick collar is adequate to let the wound heal. If an anti lick collar is used, a soft anti-lick collar is less cumbersome, although they are less durable. If the cat wears a plastic anti-lick collar, it may use the edge of the collar to grind against existing wounds, making them worse. A soft anti lick collar will become less effective as it is kicked out of the shape by the cat's hind leg, and will need prompt replacement. The cat can sanitize the wound if the collar is removed for daily short periods of time, also giving the cat an opportunity for an overall grooming. Scratches and wounds can heal completely using this method. When the cat stops wearing the collar, thinned hair, redness of skin or cracked nipples on the cat are early indicators that the cat has started to over-groom again.
Antidepressants for cats may be suggested by a vet.
In bovines, an infestation is difficult to cure, as systemic treatment is uneconomical. Local treatment with iodine compounds is time-consuming, as it needs scraping of crusty lesions. Moreover, it must be carefully conducted using gloves, lest the worker become infested.
Treatment requires both systemic oral treatment with most of the same drugs used in humans—terbinafine, fluconazole, or itraconazole—as well as a topical "dip" therapy.
Because of the usually longer hair shafts in pets compared to those of humans, the area of infection and possibly all of the longer hair of the pet must be clipped to decrease the load of fungal spores clinging to the pet's hair shafts. However, close shaving is usually not done because nicking the skin facilitates further skin infection.
Twice-weekly bathing of the pet with diluted lime sulfur dip solution is effective in eradicating fungal spores. This must continue for 3 to 8 weeks.
Washing of household hard surfaces with 1:10 household sodium hypochlorite bleach solution is effective in killing spores, but it is too irritating to be used directly on hair and skin.
Pet hair must be rigorously removed from all household surfaces, and then the vacuum cleaner bag, and perhaps even the vacuum cleaner itself, discarded when this has been done repeatedly. Removal of all hair is important, since spores may survive 12 months or even as long as two years on hair clinging to surfaces.
The first step in treatment following a bee sting is removal of the stinger itself. The stinger should be removed as quickly as possible without regard to method: studies have shown the amount of venom delivered does not differ whether the sting is pinched or scraped off and even a delay of a few seconds leads to more venom being injected. Once the stinger is removed, pain and swelling should be reduced with a cold compress. A topical anesthetic containing benzocaine will kill pain quickly and menthol is an effective anti-itch treatment. Itching can also be relieved by antihistamine or by a steroid cream.
Many traditional remedies have been suggested for bee stings including damp pastes of tobacco, salt, baking soda, papain, toothpaste, clay, garlic, urine, onions, aspirin or even application of copper coins. As with jellyfish stings, ammonia and ammonia-containing liquids, such as window cleaner, are often suggested as a way to immediately cleanse the skin and remove excess venom, and sweat itself (which also contains small amounts of ammonia) may provide some small relief.
Bee venom is acidic, and these interventions are often recommended to neutralize the venom; however, neutralizing a sting is unlikely to be effective as the venom is injected under the skin and deep into the tissues, where a topically applied alkali is unable to reach, so neutralization is unlikely to occur. In any case, the amount of venom injected is typically very small (between 5 and 50 micrograms of fluid) and placing large amounts of alkali near the sting site is unlikely to produce a perfectly neutral pH to stop the pain. Many people do claim benefit from these home remedies but it is doubtful they have any real physical effect on how much a sting hurts or continues hurting. The effect is probably related to rubbing the area or the mind perceiving benefit. Furthermore, none of these interventions have been proven to be effective in scientific studies and a randomized trial of aspirin paste and topical ice packs showed that aspirin was not effective in reducing the duration of swelling or pain in bee and wasp stings, and significantly increased the duration of redness. The study concluded that ice alone is better treatment for bee and wasp stings than aspirin.
The sting may be painful for a few hours. Swelling and itching may persist for a week. The area should not be scratched as it will only increase the itching and swelling. If swelling persists for over a week or covers an area greater than , medical attention should be sought. Doctors often recommend a tetanus immunization. For about 2 percent of people, a hypersensitivity can develop after being stung, creating a more severe reaction when stung again later. This sensitisation may happen after a single sting, or after a series of stings where they reacted normally. A highly allergic person may suffer anaphylactic shock from certain proteins in the venom, which can be life-threatening and requires emergency treatment. People known to be highly allergic may carry around epinephrine (adrenaline) in the form of a self-injectable EpiPen for the treatment of an anaphylactic shock.
For patients who experience severe or life-threatening reactions to insect stings, allergy injections composed of increasing concentrations of naturally occurring venom may provide protections against future insect stings.
Chemically speaking, bletting brings about an increase in sugars and a decrease in the acids and tannins that cause the unripe fruit to be astringent.
Ripe medlars, for example, are taken from the tree, placed somewhere cool, and allowed to ripen for several weeks. In "Trees and Shrubs", horticulturist F. A. Bush wrote about medlars that "if the fruit is wanted it should be left on the tree until late October and stored until it appears in the first stages of decay; then it is ready for eating. More often the fruit is used for making jelly." Ideally, the fruit should be harvested from the tree immediately following a hard frost, which starts the bletting process by breaking down cell walls and speeding softening.
Once the process is complete, the medlar flesh will have broken down enough that it can be spooned out of the skin. The taste of the sticky, mushy substance has been compared to sweet dates and dry applesauce, with a hint of cinnamon. In "Notes on a Cellar-Book", the great English oenophile George Saintsbury called bletted medlars the "ideal fruit to accompany wine."
In 2014, Point Defiance Zoo and Aquarium lost more than half of its 369 sea stars, and by September 2015 they numbered fewer than 100. The aquarium treated its affected sea stars with antibiotics in 2014, which proved effective. Although a mechanism is still unknown, evidence suggests that a single mutation in the elongation factor 1-alpha locus in "Pisaster ochraceus" may be associated with reduced mortality.
As of November 2013, no identifiable cause for the disease had been found. Pathogenic bacteria did not seem to be present, and though the plague might be caused by a viral or fungal pathogen, no causal agent had been found. Each episode of plague might have a different cause.
Other possible causes of the condition that have been suggested include high sea temperatures, oxygen depletion and low salinity due to freshwater runoff. Research suggests that high water temperatures are indeed linked to the disease, increasing its incidence and virulence. The disease also seems more prevalent in sheltered waters than in open seas with much wave movement. One result of global warming is higher sea temperatures. There is a wave of unusually warm water along the west coast of the United States, which is where all of the sea stars are dying off. These may impact both on starfish and on echinoderm populations in general, and a ciliate protozoan parasite ("Orchitophrya stellarum") of starfish, which eats sperm and effectively emasculates male starfish, thrives at higher temperatures.
Research in 2014 showed that the cause of the disease is transmissible from one starfish to another and that the disease-causing agent is a microorganism in the virus-size range. The most likely candidate causal agent was found to be the sea star-associated densovirus (SSaDV), which was found to be in greater abundance in diseased starfish than in healthy ones.
The treatment of choice by dermatologists is a safe and inexpensive oral medication, griseofulvin, a secondary metabolite of the fungus "Penicillium griseofulvin". This compound is "fungistatic" (inhibiting the growth or reproduction of fungi) and works by affecting the microtubular system of fungi, interfering with the mitotic spindle and cytoplasmic microtubules. The recommended pediatric dosage is 10 mg/kg/day for 6–8 weeks, although this may be increased to 20 mg/kg/d for those infected by "T. tonsurans", or those who fail to respond to the initial 6 weeks of treatment. Unlike other fungal skin infections that may be treated with topical therapies like creams applied directly to the afflicted area, griseofulvin must be taken orally to be effective; this allows the drug to penetrate the hair shaft where the fungus lives. The effective therapy rate of this treatment is generally high, in the range of 88–100%.
Other oral antifungal treatments for tinea capitis also frequently reported in the literature include terbinafine, itraconazole, and fluconazole; these drugs have the advantage of shorter treatment durations than griseofulvin. However, concern has been raised about the possibility of rare side effects like liver toxicity or interactions with other drugs; furthermore, the newer drug treatments tend to be more expensive than griseofulvin.
On September 28, 2007, the U.S. Food and Drug Administration stated that Lamisil (Terbinafine hydrochloride, by Novartis AG) is a new treatment approved for use by children aged 4 years and older. The antifungal can be sprinkled on a child's food to treat the infection. Lamisil carries hepatotoxic risk, and can cause a metallic taste in the mouth.
Coral diseases, comprising the diseases that affect corals, injure the living tissues and often result in the death of part or the whole of the colony. These diseases have been occurring more frequently in the twenty-first century as conditions become more stressful for many shallow-water corals. The pathogens causing the diseases include bacteria, fungi and protozoa, but it is not always possible to identify the pathogen involved.
Skeletal eroding band (SEB) is a disease of corals that appears as a black or dark gray band that slowly advances over corals, leaving a spotted region of dead coral in its wake. It is the most common disease of corals in the Indian and Pacific Oceans, and is also found in the Red Sea.
So far one agent has been clearly identified, the ciliate "Halofolliculina corallasia". This makes SEB the first coral disease known to be caused by a protozoan. When "H. corallasia" divides, the daughter cells move to the leading edge of the dark band and produce a protective shell called a lorica. To do this, they drill into the coral's limestone skeleton, killing coral polyps in the process.
A disease with very similar symptoms has been found in the Caribbean Sea, but has been given a different name as it is caused by a different species in the genus "Halofolliculina" and occurs in a different type of environment.
Necrotic ring spot is a common disease of turf caused by soil borne fungi (Ophiosphaerella korrae) that mainly infects roots (4). It is an important disease as it destroys the appearance of turfgrasses on park, playing fields and golf courses. Necrotic Ring Spot is caused by a fungal pathogen that is an ascomycete that produces ascospores in an ascocarp (6). They survive over winter, or any unfavorable condition as sclerotia. Most infection occurs in spring and fall when the temperature is about 13 to 28°C (5). The primary hosts of this disease are cool-season grasses such as Kentucky bluegrass and annual bluegrass (6). Once turf is infected with "O. korrae", it kills turf roots and crowns. Symptoms of the disease are quite noticeable since they appear as large yellow ring-shaped patches of dead turf. Management of the disease is often uneasy and requires application of multiple controls. The disease can be controlled by many different kind of controls including chemicals and cultural.
Bletting is a process of softening that certain fleshy fruits undergo, beyond ripening. There are some fruits that are either sweeter after some bletting, such as sea buckthorn, or for which most varieties can be eaten raw only after bletting, such as medlars, persimmons, quince, service tree fruit, and wild service tree fruit ("chequers"). The rowan or mountain ash fruit must be bletted and cooked to be edible, to break down the toxic parasorbic acid (hexenollactone) into sorbic acid.
Bald sea urchin disease is a bacterial disease known to affect several species of sea urchins on Mediterranean Sea, North Atlantic and California coastlines. Research suggests two pathogens are responsible for the disease, "Listonella anguillarum" and "Aeromonas salmonicida".
Infection generally occurs at the site of an existing physical injury. The affected area turns green and spines and other appendages are lost. If the lesion remains shallow and covers less than 30% of the animal's surface area, the animal tends to survive and eventually regenerates any lost tissue. However if the damage is more extensive or so deep that the hard inner test is perforated, the disease is fatal.
Thoroughly cleaning boats, trailers, nets and other equipment when traveling between different lakes and streams also
helps. The only EPA-approved disinfectant proven effective against VHS is Virkon AQUATIC (made by Dupont). Chlorine bleach kills the VHS virus, but in concentrations that are much too caustic for ordinary use. Disinfecting stations can be found at various inland lake boat launches in the Great Lakes region.
Ulcerative dermal necrosis (UDN) is a chronic dermatological disease of cold water salmonid fish that had a severe impact on north Atlantic Salmon and sea trout stocks in the late 1960s, the 1970s and 1980.
Affected fish developed severe skin lesions over large parts of their body which penetrated into skeletal muscle. The onset of symptoms only occurred after migration into freshwater. Lesions became quickly infected with overgrowths of "Saprolegnia" fungus giving the affected fish an appearance of being covered in slimy white pustules. The most severely affected fish frequently die before spawning.
Although the worst effects of the disease were seen in the 1970s and 1980, even now large numbers of salmon will succumb to the disease after spawning. This is thought be due in part to their weak post-spawning condition, and lack of food for several months whilst in the river.
Those fish that do make it back to the sea are thought to make a good recovery.
Amoebic gill disease (AGD) is a potentially fatal disease of some marine fish. It is caused by "Neoparamoeba perurans", the most important amoeba in cultured fish. It primarily affects farm raised fish of the Salmonidae family, most notably affecting the Tasmanian Atlantic Salmon (Salmo salar) industry, costing the A$20 million a year in treatments and lost productivity. Turbot, bass, bream, sea urchins and crabs have also been infected.
The disease has also been reported affecting the commercial salmon fisheries of the United States, Australia, New Zealand, France, Spain, Ireland and Chile. It was first diagnosed in the summer of 1984/1985 in populations of Atlantic Salmon off the east coast of Tasmania and was found to be caused by the "Neoparamoeba perurans" n.sp.
For the worm, humans are a dead-end host. "Anisakis" and "Pseudoterranova" larvae cannot survive in humans, and eventually die. In some cases, the infection resolves with only symptomatic treatment. In other cases, however, infection can lead to small bowel obstruction, which may require surgery, although treatment with albendazole alone (avoiding surgery) has been reported to be successful. Intestinal perforation (an emergency) is also possible.
Starting antibiotics early is a first step in treating septicemic plague in humans. One of the following antibiotics may be used:
- Streptomycin
- Gentamicin
- Tetracycline or doxycycline
- Chloramphenicol
- Ciprofloxacin
Lymph nodes may require draining and the patient will need close monitoring.
In animals, antibiotics such as tetracyline or doxycycline can be used. Intravenous drip may be used to assist in dehydration scenarios. Flea treatment can also be used. In some cases euthanasia may be the best option for treatment and to prevent further spreading.
Treatments for the various forms of hair loss have limited success. Three medications have evidence to support their use in male pattern hair loss: minoxidil, finasteride, and dutasteride. They typically work better to prevent further hair loss, than to regrow lost hair.
- Minoxidil (Rogaine) is a nonprescription medication approved for male pattern baldness and alopecia areata. In a liquid or foam, it is rubbed into the scalp twice a day. Some people have an allergic reaction to the propylene glycol in the minoxidil solution and a minoxidil foam was developed without propylene glycol. Not all users will regrow hair. The longer the hair has stopped growing, the less likely minoxidil will regrow hair. Minoxidil is not effective for other causes of hair loss. Hair regrowth can take 1 to 6 months to begin. Treatment must be continued indefinitely. If the treatment is stopped, hair loss resumes. Any regrown hair and any hair susceptible to being lost, while Minoxidil was used, will be lost. Most frequent side effects are mild scalp irritation, allergic contact dermatitis, and unwanted hair in other parts of the body.
- Finasteride (Propecia) is used in male-pattern hair loss in a pill form, taken 1 milligram per day. It is not indicated for women and is not recommended in pregnant women. Treatment is effective starting within 6 weeks of treatment. Finasteride causes an increase in hair retention, the weight of hair, and some increase in regrowth. Side effects in about 2% of males, include decreased sex drive, erectile dysfunction, and ejaculatory dysfunction. Treatment should be continued as long as positive results occur. Once treatment is stopped, hair loss resumes.
- Corticosteroids injections into the scalp can be used to treat alopecia areata. This type of treatment is repeated on a monthly basis. Oral pills for extensive hair loss may be used for alopecia areata. Results may take up to a month to be seen.
- Immunosuppressants applied to the scalp have been shown to temporarily reverse alopecia areata, though the side effects of some of these drugs make such therapy questionable.
- There is some tentative evidence that anthralin may be useful for treating alopecia areata.
- Hormonal modulators (oral contraceptives or antiandrogens such as spironolactone and flutamide) can be used for female-pattern hair loss associated with hyperandrogenemia.
2008 and 2012 reviews found little evidence to support the use of special lights or lasers to treat hair loss. Additionally none are approved by the FDA in America for this use. Both laser and lights appear to be safe.
A 2014 and 2016 review found tentative evidence of benefit for lasers. While another 2014 review concluded that the results are mixed, have a high risk of bias, and that its effectiveness is unclear.
Stony corals and soft corals are subject to disease in the same way as other organisms. This may not have been obvious in the past but is becoming increasingly apparent in the twenty-first century. The ill health is the result of the corals being subjected to increasing amounts of stress as the physical environment in which they live becomes less suited to their needs.
Corals live within a precise range of environmental conditions including water temperature, salinity and water quality. Variations outside the normal range of these parameters may make the corals less able to grow and reproduce successfully. Of themselves these variations may be insufficient to kill the corals, but they make them more susceptible to disease organisms. The main factor that causes stress to the corals is climate change, with an increase in sea temperatures, particularly affecting shallow-water corals in the tropics. One of the consequences of heat stress is that the coral expels its zooxanthellae and becomes bleached. The rise in sea temperature is also expected to increase the frequency and severity of tropical storms; these adversely affect corals through mechanical damage to reefs, through increased wave action, and through the stirring up and re-deposition of sediment. Other stress factors include increased pollution, increased ultraviolet radiation, and a reduction in the aragonite saturation of surface seawater that is connected with ocean acidification. Although stressed corals are more susceptible to coral diseases, it is infectious organisms that actually cause these diseases. Pathogens so far identified include bacteria, fungi and protozoans.
Many people use unproven treatments, but there is little evidence of the effectiveness of vitamins, minerals, or other dietary supplements regrowing hair or retaining hair.