Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Recovery from an anaerobic infection depends on adequate and rapid management. The main principles of managing anaerobic infections are neutralizing the toxins produced by anaerobic bacteria, preventing the local proliferation of these organisms by altering the environment and preventing their dissemination and spread to healthy tissues.
Toxin can be neutralized by specific antitoxins, mainly in infections caused by Clostridia (tetanus and botulism). Controlling the environment can be attained by draining the pus, surgical debriding of necrotic tissue, improving blood circulation, alleviating any obstruction and by improving tissue oxygenation. Therapy with hyperbaric oxygen (HBO) may also be useful. The main goal of antimicrobials is in restricting the local and systemic spread of the microorganisms.
The available parenteral antimicrobials for most infections are metronidazole, clindamycin, chloramphenicol, cefoxitin, a penicillin (i.e. ticarcillin, ampicillin, piperacillin) and a beta-lactamase inhibitor (i.e. clavulanic acid, sulbactam, tazobactam), and a carbapenem (imipenem, meropenem, doripenem, ertapenem). An antimicrobial effective against Gram-negative enteric bacilli (i.e. aminoglycoside) or an anti-pseudomonal cephalosporin (i.e. cefepime ) are generally added to metronidazole, and occasionally cefoxitin when treating intra-abdominal infections to provide coverage for these organisms. Clindamycin should not be used as a single agent as empiric therapy for abdominal infections. Penicillin can be added to metronidazole in treating of intracranial, pulmonary and dental infections to provide coverage against microaerophilic streptococci, and Actinomyces.
Oral agents adequate for polymicrobial oral infections include the combinations of amoxicillin plus clavulanate, clindamycin and metronidazole plus a macrolide. Penicillin can be added to metronidazole in the treating dental and intracranial infections to cover "Actinomyces" spp., microaerophilic streptococci, and "Arachnia" spp. A macrolide can be added to metronidazole in treating upper respiratory infections to cover "S. aureus" and aerobic streptococci. Penicillin can be added to clindamycin to supplement its coverage against "Peptostreptococcus" spp. and other Gram-positive anaerobic organisms.
Doxycycline is added to most regimens in the treatment of pelvic infections to cover chlamydia and mycoplasma. Penicillin is effective for bacteremia caused by non-beta lactamase producing bacteria. However, other agents should be used for the therapy of bacteremia caused by beta-lactamase producing bacteria.
Because the length of therapy for anaerobic infections is generally longer than for infections due to aerobic and facultative anaerobic bacteria, oral therapy is often substituted for parenteral treatment. The agents available for oral therapy are limited and include amoxacillin plus clavulanate, clindamycin, chloramphenicol and metronidazole.
In 2010 the American Surgical Society and American Society of Infectious Diseases have updated their guidelines for the treatment of abdominal infections.
The recommendations suggest the following:
For mild-to-moderate community-acquired infections in adults, the agents recommended for empiric regimens are: ticarcillin- clavulanate, cefoxitin, ertapenem, moxifloxacin, or tigecycline as single-agent therapy or combinations of metronidazole with cefazolin, cefuroxime, ceftriaxone, cefotaxime, levofloxacin, or ciprofloxacin. Agents no longer recommended are: cefotetan and clindamycin ( Bacteroides fragilis group resistance) and ampicillin-sulbactam (E. coli resistance) and ainoglycosides (toxicity).
For high risk community-acquired infections in adults, the agents recommended for empiric regimens are: meropenem, imipenem-cilastatin, doripenem, piperacillin-tazobactam, ciprofloxacin or levofloxacin in combination with metronidazole, or ceftazidime or cefepime in combination with metronidazole. Quinolones should not be used unless hospital surveys indicate >90% susceptibility of "E. coli" to quinolones.
Aztreonam plus metronidazole is an alternative, but addition of an agent effective against gram-positive cocci is recommended. The routine use of an aminoglycoside or another second agent effective against gram-negative facultative and aerobic bacilli is not recommended in the absence of evidence that the infection is caused by resistant organisms that require such therapy.
Empiric use of agents effective against enterococci is recommended and agents effective against methicillin-resistant "S. aureus" (MRSA) or yeast is not recommended in the absence of evidence of infection due to such organisms.
Empiric antibiotic therapy for health care-associated intra-abdominal should be driven by local microbiologic results. Empiric coverage of likely pathogens may require multidrug regimens that include agents with expanded spectra of activity against gram-negative aerobic and facultative bacilli. These include meropenem, imipenem-cilastatin, doripenem, piperacillin-tazobactam, or ceftazidime or cefepime in combination with metronidazole. Aminoglycosides or colistin may be required.
Antimicrobial regimens for children include an aminoglycoside-based regimen, a carbapenem (imipenem, meropenem, or ertapenem), a beta-lactam/beta-lactamase-inhibitor combination (piperacillin-tazobactam or ticarcillin-clavulanate), or an advanced-generation cephalosporin (cefotaxime, ceftriaxone, ceftazidime, or cefepime) with metronidazole.
Clinical judgment, personal experience, safety and patient compliance should direct the physician in the choice of the appropriate antimicrobial agents. The length of therapy generally ranges between 2 and 4 weeks, but should be individualized depending on the response. In some instances treatment may be required for as long as 6–8 weeks, but can often be shortened with proper surgical drainage.
Treatment depends on the type of opportunistic infection, but usually involves different antibiotics.
Individuals at higher risk are often prescribed prophylactic medication to prevent an infection from occurring. A patient's risk level for developing an opportunistic infection is approximated using the patient's CD4 T-cell count and sometimes other markers of susceptibility. Common prophylaxis treatments include the following:
Among the categories of bacteria most known to infect patients are the category MRSA (resistant strain of "S. aureus"), member of gram-positive bacteria and "Acinetobacter" ("A. baumannii"), which is gram-negative. While antibiotic drugs to treat diseases caused by gram-positive MRSA are available, few effective drugs are available for "Acinetobacter". "Acinetobacter" bacteria are evolving and becoming immune to existing antibiotics, so in many cases, polymyxin-type antibacterials need to be used. "In many respects it’s far worse than MRSA," said a specialist at Case Western Reserve University.
Another growing disease, especially prevalent in New York City hospitals, is the drug-resistant, gram-negative "Klebsiella pneumoniae". An estimated more than 20% of the "Klebsiella" infections in Brooklyn hospitals "are now resistant to virtually all modern antibiotics, and those supergerms are now spreading worldwide."
The bacteria, classified as gram-negative because of their reaction to the Gram stain test, can cause severe pneumonia and infections of the urinary tract, bloodstream, and other parts of the body. Their cell structures make them more difficult to attack with antibiotics than gram-positive organisms like MRSA. In some cases, antibiotic resistance is spreading to gram-negative bacteria that can infect people outside the hospital. "For gram-positives we need better drugs; for gram-negatives we need any drugs," said Dr. Brad Spellberg, an infectious-disease specialist at Harbor-UCLA Medical Center, and the author of "Rising Plague", a book about drug-resistant pathogens.
One-third of nosocomial infections are considered preventable. The CDC estimates 2 million people in the United States are infected annually by hospital-acquired infections, resulting in 20,000 deaths. The most common nosocomial infections are of the urinary tract, surgical site and various pneumonias.
People with AIDS are given macrolide antibiotics such as azithromycin for prophylactic treatment.
People with HIV infection and less than 50 CD4+ T-lymphocytes/uL should be administered prophylaxis against MAC. Prophylaxis should be continued for the patient's lifetime unless multiple drug therapy for MAC becomes necessary because of the development of MAC disease.
Clinicians must weigh the potential benefits of MAC prophylaxis against the potential for toxicities and drug interactions, the cost, the potential to produce resistance in a community with a high rate of tuberculosis, and the possibility that the addition of another drug to the medical regimen may adversely affect patients' compliance with treatment. Because of these concerns, therefore, in some situations rifabutin prophylaxis should not be administered.
Before prophylaxis is administered, patients should be assessed to ensure that they do not have active disease due to MAC, M. tuberculosis, or any other mycobacterial species. This assessment may include a chest radiograph and tuberculin skin test.
Rifabutin, by mouth daily, is recommended for the people's lifetime unless disseminated MAC develops, which would then require multiple drug therapy. Although other drugs, such as azithromycin and clarithromycin, have laboratory and clinical activity against MAC, none has been shown in a prospective, controlled trial to be effective and safe for prophylaxis. Thus, in the absence of data, no other regimen can be recommended at this time.The 300-mg dose of rifabutin has been well tolerated. Adverse effects included neutropenia, thrombocytopenia, rash, and gastrointestinal disturbances.
Antimicrobial stewardship teams in hospitals are encouraging optimal use of antimicrobials. The goals of antimicrobial stewardship are to help practitioners pick the right drug at the right dose and duration of therapy while preventing misuse and minimizing the development of resistance. Stewardship may reduce the length of stay by an average of slightly over 1 day while not increasing the risk of death.
Antibiotic stewardship programmes appear useful in reducing rates of antibiotic resistance.
Excessive antibiotic use has become one of the top contributors to the development of antibiotic resistance. Since the beginning of the antibiotic era, antibiotics have been used to treat a wide range of disease. Overuse of antibiotics has become the primary cause of rising levels of antibiotic resistance. The main problem is that doctors are willing to prescribe antibiotics to ill-informed individuals who believe that antibiotics can cure nearly all illnesses, including viral infections like the common cold. In an analysis of drug prescriptions, 36% of individuals with a cold or an upper respiratory infection (both viral in origin) were given prescriptions for antibiotics. These prescriptions accomplished nothing other than increasing the risk of further evolution of antibiotic resistant bacteria.
Postinfection treatment involves a combination of antituberculosis antibiotics, including rifampicin, rifabutin, ciprofloxacin, amikacin, ethambutol, streptomycin, clarithromycin or azithromycin.
NTM infections are usually treated with a three-drug regimen of either clarithromycin or azithromycin, plus rifampicin and ethambutol. Treatment typically lasts at least 12 months.
Although studies have not yet identified an optimal regimen or confirmed that any therapeutic regimen produces sustained clinical benefit for patients with disseminated MAC, the Task Force concluded that the available information indicated the need for treatment of disseminated MAC. The Public Health Service therefore recommends that regimens be based on the following principles:
- Treatment regimens outside a clinical trial should include at least two agents.
- Every regimen should contain either azithromycin or clarithromycin; many experts prefer ethambutol as a second drug. Many clinicians have added one or more of the following as second, third, or fourth agents: clofazimine, rifabutin, rifampin, ciprofloxacin, and in some situations amikacin. Isoniazid and pyrazinamide are not effective for the therapy of MAC.
- Therapy should continue for the lifetime of the patient if clinical and microbiologic improvement is observed.
Clinical manifestations of disseminated MAC—such as fever, weight loss, and night sweats—should be monitored several times during the initial weeks of therapy. Microbiologic response, as assessed by blood culture every 4 weeks during initial therapy, can also be helpful in interpreting the efficacy of a therapeutic regimen.Most patients who ultimately respond show substantial clinical improvement in the first 4–6 weeks of therapy. Elimination of the organisms from blood cultures may take somewhat longer, often requiring 4–12 weeks.
Micro-organisms are known to survive on inanimate ‘touch’ surfaces for extended periods of time. This can be especially troublesome in hospital environments where patients with immunodeficiencies are at enhanced risk for contracting nosocomial infections.
Touch surfaces commonly found in hospital rooms, such as bed rails, call buttons, touch plates, chairs, door handles, light switches, grab rails, intravenous poles, dispensers (alcohol gel, paper towel, soap), dressing trolleys, and counter and table tops are known to be contaminated with "Staphylococcus", MRSA (one of the most virulent strains of antibiotic-resistant bacteria) and vancomycin-resistant "Enterococcus" (VRE). Objects in closest proximity to patients have the highest levels of MRSA and VRE. This is why touch surfaces in hospital rooms can serve as sources, or reservoirs, for the spread of bacteria from the hands of healthcare workers and visitors to patients.
A number of compounds can decrease the risk of bacteria growing on surfaces including: copper, silver, and germicides.
Treatment of AIT involves antibiotic treatment. Based on the offending organism found on microscopic examination of the stained fine needle aspirate, the appropriate antibiotic treatment is determined. In the case of a severe infection, systemic antibiotics are necessary. Empirical broad spectrum antimicrobial treatment provides preliminary coverage for a variety of bacteria, including "S. aureus" and "S. pyogenes." Antimicrobial options include penicillinase-resistant penicillins (ex: cloxacillin, dicloxacillin) or a combination of a penicillin and a beta-lactamase inhibitor. However, in patients with a penicillin allergy, clindamycin or a macrolide can be prescribed. The majority of anaerobic organisms involved with AIT are susceptible to penicillin. Certain Gram-negative bacilli (ex: "Prevotella", "Fusobacteria", and "Porphyromonas") are exhibiting an increased resistance based on the production of beta-lactamase. Patients who have undergone recent penicillin therapy have demonstrated an increase in beta-lactamase-producing (anaerobic and aerobic) bacteria. Clindamycin, or a combination of metronidazole and a macrolide, or a penicillin combined with a beta-lactamase inhibitor is recommended in these cases. Fungal thyroiditis can be treated with amphotericin B and fluconazole. Early treatment of AIT prevents further complications. However, if antibiotic treatment does not manage the infection, surgical drainage is required. Symptoms or indications requiring drainage include continued fever, high white blood cell count, and continuing signs of localized inflammation. The draining procedure is also based on clinical examination or ultrasound/CT scan results that indicate an abscess or gas formation. Another treatment of AIT involves surgically removing the fistula. This treatment is often the option recommended for children. However, in cases of an antibiotic resistant infection or necrotic tissue, a lobectomy is recommended. If diagnosis and/or treatment is delayed, the disease could prove fatal.
Lemierre's syndrome is primarily treated with antibiotics given intravenously. "Fusobacterium necrophorum" is generally highly susceptible to beta-lactam antibiotics, metronidazole, clindamycin and third generation cephalosporins while the other fusobacteria have varying degrees of resistance to beta-lactams and clindamycin. Additionally, there may exist a co-infection by another bacterium. For these reasons is often advised not to use monotherapy in treating Lemierre's syndrome. Penicillin and penicillin-derived antibiotics can thus be combined with a beta-lactamase inhibitor such as clavulanic acid or with metronidazole. Clindamycin can be given as monotherapy.
If antibiotic therapy does not improve the clinical picture, it may prove useful to drain any abscesses and/or perform ligation of the internal jugular vein where the antibiotic can not penetrate.
There is no evidence to opt for or against the use of anticoagulation therapy. The low incidence of Lemierre's syndrome has not made it possible to set up clinical trials to study the disease.
The disease can often be untreatable, especially if other negative factors occur, i.e. various diseases occurring at the same time, such as meningitis, pneumonia.
This nitroimidazole compound, like metronidazole, has shown a marked therapeutic response in amoebic liver abscess. Occasional side effects include nausea and dizziness. Tinidazole is not widely available though it is more effective than metronidazole. Zuberi and Ibrahim found tinidazole to be effective in 86.7% cases of intestinal amoebiasis and in 100% cases of amoebic liver abscess.
Luminal amoebicides like halogenated oxyquinolines, e.g. diiodohydroxyquinoline in a dose of 0.6 G. thrice daily for 3 weeks, diloxanide furoate 0.5 G. three times a day for 10 days and sometimes tetracyclines 1–2 G./day for 5 days should be used concurrently with any of the above drugs as adjuncts to eliminate intestinal infection.
It is a synthetic compound developed by Osbond "et al." and Brossi "et al." in 1959. It is as effective as emetine in its amoebicidal properties. Given parenterally dehydroemetine is surprisingly painless. Oral tablets have been introduced. But for some reason, these tablets have not become popular. A high cure rate can be obtained with this drug. Compared to emetine, its concentration in the heart is less. Electrocardiographic changes are not seen so often. When present, they are more transient than with emetine.
Dehydroemetine is excreted by the kidneys, heart and the other organs more rapidly than emetine. Therefore, a daily dose of 1.25 mg or 1.5 mg/kg body weight is necessary. The total daily dose should not exceed 90 mg. The course should not be repeated in less than 14 days.
Concomitant pinworm infection should also be excluded, although the association has not been proven. Successful treatment of the infection with iodoquinol, doxycycline, metronidazole, paromomycin, and secnidazole has been reported. Resistance requires the use of combination therapy to eradicate the organism. All persons living in the same residence should be screened for "D. fragilis", as asymptomatic carriers may provide a source of repeated infection. Paromomycin is an effective prophylactic for travellers who will encounter poor sanitation and unsafe drinking water.
Symptomatic bacteriuria is typically treated as a urinary tract infection with antibiotics. Common choices include nitrofurantoin, and trimethoprim/sulfamethoxazole.
Antibiotics are commonly used to prevent secondary bacterial infection. There are no specific antiviral drugs in common use at this time for FVR, although one study has shown that ganciclovir, PMEDAP, and cidofovir hold promise for treatment. More recent research has indicated that systemic famciclovir is effective at treating this infection in cats without the side effects reported with other anti-viral agents. More severe cases may require supportive care such as intravenous fluid therapy, oxygen therapy, or even a feeding tube. Conjunctivitis and corneal ulcers are treated with topical antibiotics for secondary bacterial infection.
Lysine is commonly used as a treatment, however in a 2015 systematic review, where the authors investigated all clinical trials with cats as well as "in vitro" studies, concluded that lysine supplementation is not effective for the treatment or prevention of feline herpesvirus 1 infection.
Neonatal infection treatment is typically started before the diagnosis of the cause can be confirmed.
Neonatal infection can be prophylactically treated with antibiotics. Maternal treatment with antibiotics is primarily used to protect against group B streptococcus.
Women with a history of HSV, can be treated with antiviral drugs to prevent symptomatic lesions and viral shedding that could infect the infant at birth. The antiviral medications used include acyclovir, penciclovir, valacyclovir, and famciclovir. Only very small amounts of the drug can be detected in the fetus. There are no increases in drug-related abnormalities in the infant that could be attributed to acyclovir. Long-term effects of antiviral medications have not been evaluated for their effects after growth and development of the child occurs. Neutropenia can be a complication of acyclovir treatment of neonatal HSV infection, but is usually transient. Treatment with immunoglobulin therapy has not been proven to be effective.
Uncomplicated infections can be diagnosed and treated based on symptoms alone. Antibiotics taken by mouth such as trimethoprim/sulfamethoxazole (TMP/SMX), nitrofurantoin, or fosfomycin are typically first line. Cephalosporins, amoxicillin/clavulanic acid, or a fluoroquinolone may also be used. However, resistance to fluoroquinolones among the bacterial that cause urinary infections has been increasing. The FDA recommends against the use of fluoroquinolones when other options are available due to higher risks of serious side effects. These medications substantially shorten the time to recovery with all being equally effective. A three-day treatment with trimethoprim, TMP/SMX, or a fluoroquinolone is usually sufficient, whereas nitrofurantoin requires 5–7 days. Fosfomycin may be used as a single dose but has been associated with lower rates of efficacy.
With treatment, symptoms should improve within 36 hours. About 50% of people will recover without treatment within a few days or weeks. Fluoroquinolones are not recommended as a first treatment. The Infectious Diseases Society of America states this due to the concern of generating resistance to this class of medication. Amoxicillin-clavulanate appears less effective than other options. Despite this precaution, some resistance has developed to all of these medications related to their widespread use. Trimethoprim alone is deemed to be equivalent to TMP/SMX in some countries. For simple UTIs, children often respond to a three-day course of antibiotics. Women with recurrent simple UTIs may benefit from self-treatment upon occurrence of symptoms with medical follow-up only if the initial treatment fails.
Condition predisposing to anaerobic infections include: exposure of a sterile body location to a high inoculum of indigenous bacteria of mucous membrane flora origin, inadequate blood supply and tissue necrosis which lower the oxidation and reduction potential which support the growth of anaerobes. Conditions which can lower the blood supply and can predispose to anaerobic infection are: trauma, foreign body, malignancy, surgery, edema, shock, colitis and vascular disease. Other predisposing conditions include splenectomy, neutropenia, immunosuppression, hypogammaglobinemia, leukemia, collagen vascular disease and cytotoxic drugs and diabetes mellitus. A preexisting infection caused by aerobic or facultative organisms can alter the local tissue conditions and make them more favorable for the growth of anaerobes. Impairment in defense mechanisms due to anaerobic conditions can also favor anaerobic infection. These include production of leukotoxins (by "Fusobacterium" spp.), phagocytosis intracellular killing impairments (often caused by encapsulated anaerobes and by succinic acid ( produced by "Bacteroides" spp.), chemotaxis inhibition (by "Fusobacterium, Prevotella" and "Porphyromonas" spp.), and proteases degradation of serum proteins (by Bacteroides spp.) and production of leukotoxins (by "Fusobacterium" spp.).
The hallmarks of anaerobic infection include suppuration, establishment of an abscess, thrombophlebitis and gangrenous destruction of tissue with gas generation. Anaerobic bacteria are very commonly recovered in chronic infections, and are often found following the failure of therapy with antimicrobials that are ineffective against them, such as trimethoprim–sulfamethoxazole (co-trimoxazole), aminoglycosides, and the earlier quinolones.
Some infections are more likely to be caused by anaerobic bacteria, and they should be suspected in most instances. These infections include brain abscess, oral or dental infections, human or animal bites, aspiration pneumonia and lung abscesses, amnionitis, endometritis, septic abortions, tubo-ovarian abscess, peritonitis and abdominal abscesses following viscus perforation, abscesses in and around the oral and rectal areas, pus-forming necrotizing infections of soft tissue or muscle and postsurgical infections that emerge following procedures on the oral or gastrointestinal tract or female pelvic area. Some solid malignant tumors, ( colonic, uterine and bronchogenic, and head and neck necrotic tumors, are more likely to become secondarily infected with anaerobes. The lack of oxygen within the tumor that are proximal to the endogenous adjacent mucosal flora can predispose such infections.
The mainstay of treatment is antibiotics. Phenazopyridine is occasionally prescribed during the first few days in addition to antibiotics to help with the burning and urgency sometimes felt during a bladder infection. However, it is not routinely recommended due to safety concerns with its use, specifically an elevated risk of methemoglobinemia (higher than normal level of methemoglobin in the blood). Acetaminophen (paracetamol) may be used for fevers. There is no good evidence for the use of cranberry products for treating current infections.
It is currently recommended that HIV-infected individuals with TB receive combined treatment for both diseases, irrespective of CD4+ cell count. ART (Anti Retroviral Therapy) along with ATT (Anti Tuberculosis Treatment) is the only available treatment in present time. Though the timing of starting ART is the debatable question due to the risk of immune reconstitution inflammatory syndrome (IRIS). The advantages of early ART include reduction in early mortality, reduction in relapses, preventing drug resistance to ATT and reduction in occurrence of HIV-associated infections other than TB. The disadvantages include cumulative toxicity of ART and ATT, drug interactions leading to inflammatory reactions are the limiting factors for choosing the combination of ATT and ART.
A systematic review investigated the optimal timing of starting antiretroviral therapy in adults with newly diagnosed pulmonary tuberculosis. The review authors included eight trials, that were generally well-conducted, with over 4500 patients in total. The early provision of antiretroviral therapy in HIV-infected adults with newly diagnosed tuberculosis improved survival in patients who had a low CD4 count (less than 0.050 x 109 cells/L). However, such therapy doubled the risk for IRIS. Regarding patients with higher CD4 counts (more than 0.050 x 109 cells/L), the evidence is not sufficient to make a conclusion about benefits or risks of early antiretroviral therapy.
Treatment is typically with the antibiotics metronidazole or clindamycin. They can be either given by mouth or applied inside the vagina. About 10% to 15% of people, however, do not improve with the first course of antibiotics and recurrence rates of up to 80% have been documented. Recurrence rates are increased with sexual activity with the same pre-/posttreatment partner and inconsistent condom use although estrogen-containing contraceptives decrease recurrence. When clindamycin is given to pregnant women symptomatic with BV before 22 weeks of gestation the risk of pre-term birth before 37 weeks of gestation is lower.
Other antibiotics that may work include macrolides, lincosamides, nitroimidazoles, and penicillins.
Bacterial vaginosis is not considered a sexually transmitted infection, and treatment of a male sexual partner of a woman with bacterial vaginosis is not recommended.
Antibiotics are usually prescribed, with the agent selected based on suspected organism and presence or absence of purulence, although the best treatment choice is unclear. If an abscess is also present, surgical drainage is usually indicated, with antibiotics often prescribed for co-existent cellulitis, especially if extensive. Pain relief is also often prescribed, but excessive pain should always be investigated, as it is a symptom of necrotizing fasciitis. Elevation of the affected area is often recommended.
Steroids may speed recovery in those on antibiotics.
A 2009 Cochrane review found tentative but insufficient evidence for probiotics as a treatment for BV. A 2014 review reached the same conclusion. A 2013 review found some evidence supporting the use of probiotics during pregnancy. The preferred probiotics for BV are those containing high doses of lactobacilli (around 10 ) given in the vagina. Intravaginal administration is preferred to taking them by mouth. Prolonged repetitive courses of treatment appear to be more promising than short courses.
Asymptomatic bacteriuria generally does not require treatment. Exceptions include during pregnancy and in those undergoing surgery of the urinary tract. Children with vesicoureteral reflux or others with structural abnormalities of the urinary tract.
There is no indication to treat asymptomatic bacteriuria in diabetics, renal transplant recipients, and in those with spinal cord injuries.
The overuse of antibiotic therapy to treat asymptomatic bacteriuria increases the risk of diarrhea, antimicrobial resistance, and infection due to Clostridium difficile. Other effects include increased financial burdens and overreporting of mandated catheter-associated urinary tract infection.