Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Fumagillin has been used in the treatment.
Another agent used is albendazole.
Currently, antibiotic drugs such as penicillin or tetracycline are the only effective methods for disease treatment. Within wild populations, disease control consists of reducing the amount of bacterial spores present in the environment. This can be done by removing contaminated carcasses and scat.
Treatment depends on the type of opportunistic infection, but usually involves different antibiotics.
When infection attacks the body, "anti-infective" drugs can suppress the infection. Several broad types of anti-infective drugs exist, depending on the type of organism targeted; they include antibacterial (antibiotic; including antitubercular), antiviral, antifungal and antiparasitic (including antiprotozoal and antihelminthic) agents. Depending on the severity and the type of infection, the antibiotic may be given by mouth or by injection, or may be applied topically. Severe infections of the brain are usually treated with intravenous antibiotics. Sometimes, multiple antibiotics are used in case there is resistance to one antibiotic. Antibiotics only work for bacteria and do not affect viruses. Antibiotics work by slowing down the multiplication of bacteria or killing the bacteria. The most common classes of antibiotics used in medicine include penicillin, cephalosporins, aminoglycosides, macrolides, quinolones and tetracyclines.
Not all infections require treatment, and for many self-limiting infections the treatment may cause more side-effects than benefits. Antimicrobial stewardship is the concept that healthcare providers should treat an infection with an antimicrobial that specifically works well for the target pathogen for the shortest amount of time and to only treat when there is a known or highly suspected pathogen that will respond to the medication.
The primary method for controlling the incidence of gaffkaemia is improved hygiene. Other measures include limiting damage to the exoskeleton (preventing the bacterium's entry), reducing the water temperature, and reducing the stocking density. Antibiotics may be effective against the bacterium, but only tetracycline is currently approved by the U.S Food and Drug Administration for use in American lobsters.
Intravenously administered glucocorticoids, such as prednisone, are the standard of care in acute GvHD and chronic GVHD. The use of these glucocorticoids is designed to suppress the T-cell-mediated immune onslaught on the host tissues; however, in high doses, this immune-suppression raises the risk of infections and cancer relapse. Therefore, it is desirable to taper off the post-transplant high-level steroid doses to lower levels, at which point the appearance of mild GVHD may be welcome, especially in HLA mis-matched patients, as it is typically associated with a graft-versus-tumor effect.. Cyclosporine and tacrolimus are inhibitors of calcineurin. Both substances are structurally different but have the same mechanism of action. Cyclosporin binds to the cytosolic protein Peptidyl-prolyl cis-trans isomerase A (known as cyclophilin), while tacrolimus binds to the cytosolic protein Peptidyl-prolyl cis-trans isomerase FKBP12. These complexes inhibit calcineurin, block dephosphorylation of the transcription factor NFAT of activated T-cells and its translocation into the nucleus. Standard prophylaxis involves the use of cyclosporine for six months with methotrexate. Cyclosporin levels should be maintained above 200 ng/ml.
Other substances that have been studied for GvHD prophylaxis include, for example: sirolimus, pentostatin and alemtuzamab.
In August 2017 the US FDA approved ibrutinib to treat chronic GvHD after failure of one or more other systemic treatments.
Opportunistic infections caused by Feline Leukemia Virus and Feline immunodeficiency virus retroviral infections can be treated with Lymphocyte T-Cell Immune Modulator.
In laboratory animals, prevention includes a low-stress environment, an adequate amount of nutritional feed, and appropriate sanitation measurements. Because animals likely ingest bacterial spores from contaminated bedding and feed, regular cleaning is a helpful method of prevention. No prevention methods are currently available for wild animal populations.
Doxycycline and minocycline are the medications of choice. For people allergic to antibiotics of the tetracycline class, rifampin is an alternative. Early clinical experience suggested that chloramphenicol may also be effective, however, in vitro susceptibility testing revealed resistance.
Host tropism is the infection specificity of certain pathogens to particular hosts and host tissues. This type of tropism explains why most pathogens are only capable of infecting a limited range of host organisms.
Researchers can classify pathogenic organisms by the range of species and cell types that they exhibit host tropism for. For instance, pathogens that are able to infect a wide range of hosts and tissues are said to be amphotropic. Ecotropic pathogens, on the other hand, are only capable of infecting a narrow range of hosts and host tissue. Knowledge of a pathogen's host specificity allows professionals in the research and medical industries to model pathogenesis and develop vaccines, medication, and preventative measures to fight against infection. Methods such as cell engineering, direct engineering and assisted evolution of host-adapted pathogens, and genome-wide genetic screens are currently being used by researchers to better understand the host range of a variety of different pathogenic organisms.
Research into AM functionality has been on the rise since AMs are one of the first lines of a defense against invasive pathogens. One of the most prominent fields is investigating liposomes as deliverers of antibiotics for treatment of respiratory intracellular infections. Intracellular parasites, such as M. tuberculosis, C. pneumoniae, L. monocytogenes, L. pneumophila, and F. tularensis, (to name a few) are taken up by AMs via phagocytosis, but are resistant to the biocidal mechanisms of AMs and can survive intracellularly, thus inducing severe respiratory infections. Pulmonary tuberculosis is caused by M. tuberculosis, and is now a major infectious disease worldwide and its incidence is increasing, especially in association with the AIDS pandemic. For sterilization of intracellular parasites in AMs, antibiotics are normally given orally or intravenously, but much of the antibiotics disperse to many different tissues, diminishing its effectiveness. Pulmonary administration of mannosylated liposomes is a much more direct, efficient route in targeting AMs; it enhances antimicrobial effect, reduces the dosage needed, and avoids unnecessary distribution to the blood. Since mannose receptors are exclusively expressed on the surface of AM, mannosylation of liposomes is an appealing approach to cell-selective targeting to AM. The efficacy of pulmonary administration of ciprofloxacin (CPFX) incorporated into mannosylated liposomes (mannosylated CPFX-lipososomes) was examined in rats, and determined to be an efficient means to target AMs.
The Infectious Disease Society of America (IDSA) recommends treating uncomplicated methicillin resistant staph aureus (MRSA) bacteremia with a 14-day course of intravenous vancomycin. Uncomplicated bacteremia is defined as having positive blood cultures for MRSA, but having no evidence of endocarditis, no implanted prostheses, negative blood cultures after 2–4 days of treatment, and signs of clinical improvement after 72 hrs.
The antibiotic treatment of choice for streptococcal and enteroccal infections differs by species. However, it is important to look at the antibiotic resistance pattern for each species from the blood culture to better treat infections caused by resistant organisms.
The presence of bacteria in the blood almost always requires treatment with antibiotics. This is because there are high mortality rates from progression to sepsis if antibiotics are delayed.
The treatment of bacteremia should begin with empiric antibiotic coverage. Any patient presenting with signs or symptoms of bacteremia or a positive blood culture should be started on intravenous antibiotics. The choice of antibiotic is determined by the most likely source of infection and by the characteristic organisms that typically cause that infection. Other important considerations include the patient's past history of antibiotic use, the severity of the presenting symptoms, and any allergies to antibiotics. Empiric antibiotics should be narrowed, preferably to a single antibiotic, once the blood culture returns with a particular bacteria that has been isolated.
Throughout history treatment relied primarily on β-lactam antibiotics. In the 1960s nearly all strains of "S. pneumoniae" were susceptible to penicillin, but more recently there has been an increasing prevalence of penicillin resistance especially in areas of high antibiotic use. A varying proportion of strains may also be resistant to cephalosporins, macrolides (such as erythromycin), tetracycline, clindamycin and the quinolones. Penicillin-resistant strains are more likely to be resistant to other antibiotics. Most isolates remain susceptible to vancomycin, though its use in a β-lactam-susceptible isolate is less desirable because of tissue distribution of the drug and concerns of development of vancomycin resistance. More advanced beta-lactam antibiotics (cephalosporins) are commonly used in combination with other drugs to treat meningitis and community-acquired pneumonia. In adults recently developed fluoroquinolones such as levofloxacin and moxifloxacin are often used to provide empiric coverage for patients with pneumonia, but in parts of the world where these drugs are used to treat tuberculosis resistance has been described.
Susceptibility testing should be routine with empiric antibiotic treatment guided by resistance patterns in the community in which the organism was acquired. There is currently debate as to how relevant the results of susceptibility testing are to clinical outcome. There is slight clinical evidence that penicillins may act synergistically with macrolides to improve outcomes.
There are a large number of clinical trials either ongoing or recently completed in the investigation of graft-versus-host disease treatment and prevention. Currently, there are no reliable molecular markers reflecting the onset or clinical course of aGVHD. However, it has been shown that genes responsible for cytokine signaling, inflammatory response, and regulation of cell cycle are differentially expressed in patinets with fatal GvHD versus „indolent“ GvHD.
On May 17, 2012, Osiris Therapeutics announced that Canadian health regulators approved Prochymal, its drug for acute graft-versus host disease in children who have failed to respond to steroid treatment. Prochymal is the first stem cell drug to be approved for a systemic disease.
In January 2016, Mesoblast released results of a Phase2 clinical trial on 241 children with acute Graft-versus-host disease, that was not responsive to steroids. The trial was of a mesenchymal stem cell therapy known as remestemcel-L or MSC-100-IV. Survival rate was 82% (vs 39% of controls) for those who showed some improvement after 1 month, and in the long term 72% (vs 18% of controls) for those that showed little effect after 1 month.
Ticks should be removed promptly and carefully with tweezers and by applying gentle, steady traction. The tick's body should not be crushed when it is removed and the tweezers should be placed as close to the skin as possible to avoid leaving tick mouthparts in the skin; mouthparts left in the skin can allow secondary infections. Ticks should not be removed with bare hands. Hands should be protected by gloves and/or tissues and thoroughly washed with soap and water after the removal process.
A match or flame should not be used to remove a tick. This method, once thought safe, can cause the tick to regurgitate, expelling any disease it may be carrying into the bite wound.
Because "B. suis" is facultative and intracellular, and is able to adapt to environmental conditions in the macrophage, treatment failure and relapse rates are high. The only effective way to control and eradicate zoonosis is by vaccination of all susceptible hosts and elmination of infected animals. The "Brucella abortus" (rough LPS "Brucella") vaccine, developed for bovine brucellosis and licensed by the USDA Animal Plant Health Inspection Service, has shown protection for some swine and is also effective against "B. suis" infection, but currently no approved vaccine for swine brucellosis is available.
Subcutaneous cysts may be surgically opened to remove less mature bots. If more matured, cysts may be opened and "cuterebra" may be removed using mosquito forceps. Covering the pore in petroleum jelly may aide in removal. If larvae are discovered within body tissues, rather than subcutaneously, surgical removal is the only means of treatment. Ivermectin may be administered with corticosteroids to halt larval migration in cats presenting with respiratory cuterebriasis, but this is not approved for use in cats. There is not yet a known cure for cerebrospinal cuterebriasis.
No specific treatment for CTF is yet available. The first action is make sure the tick is fully removed from the skin, then acetaminophen and analgesics can be used to help relieve the fever and pain. Aspirin is not recommended for children, as it has been linked to Reye’s syndrome in some viral illnesses. Salicylates should not be used because of thrombocytopenia, and the rare occurrence of bleeding disorders. People who suspect they have been bitten by a tick or are starting to show signs of CTF should contact their physicians immediately.
Treatments involve antibiotics that cover for "Pseudomonas aeruginosa". Antipseudomonal penicillins, aminoglycosides, fluoroquinolones, third generation cephalosporins or aztreonam can be given. Usually, the antibiotics are changed according to the culture and sensitivity result. In patients with very low white blood cell counts, Granulocyte-macrophage colony-stimulating factor may be given. Depending on the causal agents, antivirals or antifungals can be added.
Surgery will be needed if there is extensive necrosis not responding to medical treatments.
Dysentery is initially managed by maintaining fluid intake using oral rehydration therapy. If this treatment cannot be adequately maintained due to vomiting or the profuseness of diarrhea, hospital admission may be required for intravenous fluid replacement. Ideally, no antimicrobial therapy should be administered until microbiological microscopy and culture studies have established the specific infection involved. When laboratory services are not available, it may be necessary to administer a combination of drugs, including an amoebicidal drug to kill the parasite and an antibiotic to treat any associated bacterial infection.
Anyone with bloody diarrhea needs immediate medical help. Treatment often starts with an oral rehydrating solution—water mixed with salt and carbohydrates—to prevent dehydration. (Emergency relief services often distribute inexpensive packets of sugars and mineral salts that can be mixed with clean water and used to restore lifesaving fluids in dehydrated children gravely ill from dysentery.)
If "Shigella" is suspected and it is not too severe, the doctor may recommend letting it run its course—usually less than a week. The patient will be advised to replace fluids lost through diarrhea. If the infection is severe, the doctor may prescribe antibiotics, such as ciprofloxacin or TMP-SMX (Bactrim). Unfortunately, many strains of "Shigella" are becoming resistant to common antibiotics, and effective medications are often in short supply in developing countries. If necessary, a doctor may have to reserve antibiotics for those at highest risk for death, including young children, people over 50, and anyone suffering from dehydration or malnutrition.
No vaccine is available. There are several "Shigella" vaccine candidates in various stages of development that could reduce the incidence of dysentery in endemic countries, as well as in travelers suffering from traveler's diarrhea.
Early antibiotic treatment of anthrax is essential; delay significantly lessens chances for survival.
Treatment for anthrax infection and other bacterial infections includes large doses of intravenous and oral antibiotics, such as fluoroquinolones (ciprofloxacin), doxycycline, erythromycin, vancomycin, or penicillin. FDA-approved agents include ciprofloxacin, doxycycline, and penicillin.
In possible cases of pulmonary anthrax, early antibiotic prophylaxis treatment is crucial to prevent possible death.
In recent years, many attempts have been made to develop new drugs against anthrax, but existing drugs are effective if treatment is started soon enough.
There is usually an indication for a specific identification of an infectious agent only when such identification can aid in the treatment or prevention of the disease, or to advance knowledge of the course of an illness prior to the development of effective therapeutic or preventative measures. For example, in the early 1980s, prior to the appearance of AZT for the treatment of AIDS, the course of the disease was closely followed by monitoring the composition of patient blood samples, even though the outcome would not offer the patient any further treatment options. In part, these studies on the appearance of HIV in specific communities permitted the advancement of hypotheses as to the route of transmission of the virus. By understanding how the disease was transmitted, resources could be targeted to the communities at greatest risk in campaigns aimed at reducing the number of new infections. The specific serological diagnostic identification, and later genotypic or molecular identification, of HIV also enabled the development of hypotheses as to the temporal and geographical origins of the virus, as well as a myriad of other hypothesis. The development of molecular diagnostic tools have enabled physicians and researchers to monitor the efficacy of treatment with anti-retroviral drugs. Molecular diagnostics are now commonly used to identify HIV in healthy people long before the onset of illness and have been used to demonstrate the existence of people who are genetically resistant to HIV infection. Thus, while there still is no cure for AIDS, there is great therapeutic and predictive benefit to identifying the virus and monitoring the virus levels within the blood of infected individuals, both for the patient and for the community at large.
There is no cure for polioencephalitis so prevention is essential. Many people that become infected will not develop symptoms and their prognosis is excellent. However, the prognosis is dependent on the amount of cellular damage done by the virus and the area of the brain affected. Many people that develop more severe symptoms can have lifelong disabilities or it can lead to death. Supportive treatments include bed rest, pain relievers, and a nutritious diet. Many drugs have been used to treat psychiatric symptoms such as Clonazepam for insomnia and Desvenlafaxine or Citalopram for depressed mood.
In May 2009, Human Genome Sciences submitted a biologic license application (BLA, permission to market) for its new drug, raxibacumab (brand name ABthrax) intended for emergency treatment of inhaled anthrax. On 14 December 2012, the US Food and Drug Administration approved raxibacumab injection to treat inhalational anthrax. Raxibacumab is a monoclonal antibody that neutralizes toxins produced by "B. anthracis". On March, 2016, FDA approved a second anthrax treatment using a monoclonal antibody which neutralizes the toxins produced by "B. anthracis". Obiltoxaximab is approved to treat inhalational anthrax in conjunction with appropriate antibacterial drugs, and for prevention when alternative therapies are not available or appropriate.