Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Starting antibiotics early is a first step in treating septicemic plague in humans. One of the following antibiotics may be used:
- Streptomycin
- Gentamicin
- Tetracycline or doxycycline
- Chloramphenicol
- Ciprofloxacin
Lymph nodes may require draining and the patient will need close monitoring.
In animals, antibiotics such as tetracyline or doxycycline can be used. Intravenous drip may be used to assist in dehydration scenarios. Flea treatment can also be used. In some cases euthanasia may be the best option for treatment and to prevent further spreading.
It is extremely difficult to successfully treat BPF, mainly because of the difficulty obtaining a proper diagnosis. Since the disease starts out with what seems to be a common case of conjunctivitis, "H. aegyptius" is not susceptible to the antibiotic eye drops that are being used to treat it. This treatment is ineffective because it treats only the local ocular infection, whereas if it progresses to BPF, systemic antibiotic treatment is required. Although BPF is susceptible to many commonly used antibiotics, including ampicillin, cefuroxime, cefotaxime, rifampin, and chloramphenicol, by the time it is diagnosed the disease has progressed too much to be effectively treated. However, with the fast rate of progression of BPF it is unlikely that it will be successfully treated. With antibiotic therapy, the mortality rate of BPF is around 70%.
The basic method for control of the conjunctivitis includes proper hygiene and care for the affected eye. If the conjunctivitis is found to be caused by "H. aegyptius" Biogroup III then prompt antibiotic treatment preferably with rifampin has been shown to prevent progression to BPF. If the infected person resides in Brazil, it is mandatory that the infection is reported to the health authority so that a proper investigation of the contacts can be completed. This investigation will help to determine the probable source of the infection.
The following steps and precautions should be used to avoid infection of the septicemic plague:
- Caregivers of infected patients should wear masks, gloves, goggles and gowns
- Take antibiotics if close contact with infected patient has occurred
- Use insecticides throughout house
- Avoid contact with dead rodents or sick cats
- Set traps if mice or rats are present around the house
- Do not allow family pets to roam in areas where plague is common
- Flea control and treatment for animals (especially rodents)
Antibiotic treatment only has a marginal effect on the duration of symptoms, and its use is not recommended except in high-risk patients with clinical complications.
Erythromycin can be used in children, and tetracycline in adults. Some studies show, however, that erythromycin rapidly eliminates "Campylobacter" from the stool without affecting the duration of illness. Nevertheless, children with dysentery due to "C. jejuni" benefit from early treatment with erythromycin. Treatment with antibiotics, therefore, depends on the severity of symptoms. Quinolones are effective if the organism is sensitive, but high rates of quinolone use in livestock means that quinolones are now largely ineffective.
Antimotility agents, such as loperamide, can lead to prolonged illness or intestinal perforation in any invasive diarrhea, and should be avoided. Trimethoprim/sulfamethoxazole and ampicillin are ineffective against "Campylobacter".
The infection is usually self-limiting, and in most cases, symptomatic treatment by liquid and electrolyte replacement is enough in human infections.
The Infectious Disease Society of America (IDSA) recommends treating uncomplicated methicillin resistant staph aureus (MRSA) bacteremia with a 14-day course of intravenous vancomycin. Uncomplicated bacteremia is defined as having positive blood cultures for MRSA, but having no evidence of endocarditis, no implanted prostheses, negative blood cultures after 2–4 days of treatment, and signs of clinical improvement after 72 hrs.
The antibiotic treatment of choice for streptococcal and enteroccal infections differs by species. However, it is important to look at the antibiotic resistance pattern for each species from the blood culture to better treat infections caused by resistant organisms.
The treatment of gram negative bacteremia is also highly dependent on the causative organism. Empiric antibiotic therapy should be guided by the most likely source of infection and the patient's past exposure to healthcare facilities. In particular, a recent history of exposure to a healthcare setting may necessitate the need for antibiotics with "pseudomonas aeruginosa" coverage or broader coverage for resistant organisms. Extended generation cephalosporins such as ceftriaxone or beta lactam/beta lactam inhibitor antibiotics such as piperacillin-tazobactam are frequently used for the treatment of gram negative bacteremia.
The main means of prevention is through the promotion of safe handling, cooking and consumption of food. This includes washing raw vegetables and cooking raw food thoroughly, as well as reheating leftover or ready-to-eat foods like hot dogs until steaming hot.
Another aspect of prevention is advising high-risk groups such as pregnant women and immunocompromised patients to avoid unpasteurized pâtés and foods such as soft cheeses like feta, Brie, Camembert cheese, and bleu. Cream cheeses, yogurt, and cottage cheese are considered safe. In the United Kingdom, advice along these lines from the Chief Medical Officer posted in maternity clinics led to a sharp decline in cases of listeriosis in pregnancy in the late 1980s.
"S. pneumonia" can be treated with a combination of penicillin and ampicillin.
Bacteremia should be treated for 2 weeks, meningitis for 3 weeks, and brain abscess for at least 6 weeks. Ampicillin generally is considered antibiotic of choice; gentamicin is added frequently for its synergistic effects. Overall mortality rate is 20–30%; of all pregnancy-related cases, 22% resulted in fetal loss or neonatal death, but mothers usually survive.
For suspected GBS meningitis, the following treatment is recommended by the American Academy of Pediatrics: doses of penicillin up to 450 000 U/kg daily (270 mg/kg/day) divided 8 hourly if 7 days of age. For penicillin [the recommended dose is up to 300 mg/kg/daily divided 8 hourly if 7 days of age. After confirmation of GBS, penicillin alone should be used for the rest of the treatment, including the 14-day post-sterilization therapy.
Treatment of infections caused by "Bartonella" species include:
Some authorities recommend the use of azithromycin.
Throughout history treatment relied primarily on β-lactam antibiotics. In the 1960s nearly all strains of "S. pneumoniae" were susceptible to penicillin, but more recently there has been an increasing prevalence of penicillin resistance especially in areas of high antibiotic use. A varying proportion of strains may also be resistant to cephalosporins, macrolides (such as erythromycin), tetracycline, clindamycin and the quinolones. Penicillin-resistant strains are more likely to be resistant to other antibiotics. Most isolates remain susceptible to vancomycin, though its use in a β-lactam-susceptible isolate is less desirable because of tissue distribution of the drug and concerns of development of vancomycin resistance. More advanced beta-lactam antibiotics (cephalosporins) are commonly used in combination with other drugs to treat meningitis and community-acquired pneumonia. In adults recently developed fluoroquinolones such as levofloxacin and moxifloxacin are often used to provide empiric coverage for patients with pneumonia, but in parts of the world where these drugs are used to treat tuberculosis resistance has been described.
Susceptibility testing should be routine with empiric antibiotic treatment guided by resistance patterns in the community in which the organism was acquired. There is currently debate as to how relevant the results of susceptibility testing are to clinical outcome. There is slight clinical evidence that penicillins may act synergistically with macrolides to improve outcomes.
Antibiotics are the treatment of choice for bacterial pneumonia, with ventilation (oxygen supplement) as supportive therapy. The antibiotic choice depends on the nature of the pneumonia, the microorganisms most commonly causing pneumonia in the geographical region, and the immune status and underlying health of the individual. In the United Kingdom, amoxicillin is used as first-line therapy in the vast majority of patients acquiring pneumonia in the community, sometimes with added clarithromycin. In North America, where the "atypical" forms of community-acquired pneumonia are becoming more common, clarithromycin, azithromycin, or fluoroquinolones as single therapy have displaced the amoxicillin as first-line therapy.
Local patterns of antibiotic-resistance always need to be considered when initiating pharmacotherapy. In hospitalized individuals or those with immune deficiencies, local guidelines determine the selection of antibiotics.
Treatment for gastroenteritis due to "Y. enterocolitica" is not needed in the majority of cases. Severe infections with systemic involvement (sepsis or bacteremia) often requires aggressive antibiotic therapy; the drugs of choice are doxycycline and an aminoglycoside. Alternatives include cefotaxime, fluoroquinolones, and co-trimoxazole.
The treatment of choice is penicillin, and the duration of treatment is around 10 days. Antibiotic therapy (using injected penicillin) has been shown to reduce the risk of acute rheumatic fever. In individuals with a penicillin allergy, erythromycin, other macrolides, and cephalosporins have been shown to be effective treatments.
Treatment with ampicillin/sulbactam, amoxicillin/clavulanic acid, or clindamycin is appropriate if deep oropharyngeal abscesses are present, in conjunction with aspiration or drainage. In cases of streptococcal toxic shock syndrome, treatment consists of penicillin and clindamycin, given with intravenous immunoglobulin.
For toxic shock syndrome and necrotizing fasciitis, high-dose penicillin and clindamycin are used. Additionally, for necrotizing fasciitis, surgery is often needed to remove damaged tissue and stop the spread of the infection.
No instance of penicillin resistance has been reported to date, although since 1985, many reports of penicillin tolerance have been made. The reason for the failure of penicillin to treat "S. pyogenes" is most commonly patient noncompliance, but in cases where patients have been compliant with their antibiotic regimen, and treatment failure still occurs, another course of antibiotic treatment with cephalosporins is common.
"Streptococcus pneumoniae" — amoxicillin (or erythromycin in patients allergic to penicillin); cefuroxime and erythromycin in severe cases.
"Staphylococcus aureus" — flucloxacillin (to counteract the organism's β-lactamase).
Prophylaxis by vaccination, as well as preventive measures like protective clothing, tick control, and mosquito control are advised. The vaccine for KFDV consists of formalin-inactivated KFDV. The vaccine has a 62.4% effectiveness rate for individuals who receive two doses. For individuals who receive an additional dose, the effectiveness increases to 82.9%. Specific treatments are not available.
There is no treatment currently available. The virus generally resolves itself within a five to seven day period. The use of steroids can actually cause a corneal microbial superinfection which then requires antimicrobial therapy to eliminate.
Depending on the severity, treatment involves either oral or intravenous antibiotics, using penicillins, clindamycin, or erythromycin. While illness symptoms resolve in a day or two, the skin may take weeks to return to normal.
Because of the risk of reinfection, prophylactic antibiotics are sometimes used after resolution of the initial condition. However, this approach does not always stop reinfection.
Recovery from an anaerobic infection depends on adequate and rapid management. The main principles of managing anaerobic infections are neutralizing the toxins produced by anaerobic bacteria, preventing the local proliferation of these organisms by altering the environment and preventing their dissemination and spread to healthy tissues.
Toxin can be neutralized by specific antitoxins, mainly in infections caused by Clostridia (tetanus and botulism). Controlling the environment can be attained by draining the pus, surgical debriding of necrotic tissue, improving blood circulation, alleviating any obstruction and by improving tissue oxygenation. Therapy with hyperbaric oxygen (HBO) may also be useful. The main goal of antimicrobials is in restricting the local and systemic spread of the microorganisms.
The available parenteral antimicrobials for most infections are metronidazole, clindamycin, chloramphenicol, cefoxitin, a penicillin (i.e. ticarcillin, ampicillin, piperacillin) and a beta-lactamase inhibitor (i.e. clavulanic acid, sulbactam, tazobactam), and a carbapenem (imipenem, meropenem, doripenem, ertapenem). An antimicrobial effective against Gram-negative enteric bacilli (i.e. aminoglycoside) or an anti-pseudomonal cephalosporin (i.e. cefepime ) are generally added to metronidazole, and occasionally cefoxitin when treating intra-abdominal infections to provide coverage for these organisms. Clindamycin should not be used as a single agent as empiric therapy for abdominal infections. Penicillin can be added to metronidazole in treating of intracranial, pulmonary and dental infections to provide coverage against microaerophilic streptococci, and Actinomyces.
Oral agents adequate for polymicrobial oral infections include the combinations of amoxicillin plus clavulanate, clindamycin and metronidazole plus a macrolide. Penicillin can be added to metronidazole in the treating dental and intracranial infections to cover "Actinomyces" spp., microaerophilic streptococci, and "Arachnia" spp. A macrolide can be added to metronidazole in treating upper respiratory infections to cover "S. aureus" and aerobic streptococci. Penicillin can be added to clindamycin to supplement its coverage against "Peptostreptococcus" spp. and other Gram-positive anaerobic organisms.
Doxycycline is added to most regimens in the treatment of pelvic infections to cover chlamydia and mycoplasma. Penicillin is effective for bacteremia caused by non-beta lactamase producing bacteria. However, other agents should be used for the therapy of bacteremia caused by beta-lactamase producing bacteria.
Because the length of therapy for anaerobic infections is generally longer than for infections due to aerobic and facultative anaerobic bacteria, oral therapy is often substituted for parenteral treatment. The agents available for oral therapy are limited and include amoxacillin plus clavulanate, clindamycin, chloramphenicol and metronidazole.
In 2010 the American Surgical Society and American Society of Infectious Diseases have updated their guidelines for the treatment of abdominal infections.
The recommendations suggest the following:
For mild-to-moderate community-acquired infections in adults, the agents recommended for empiric regimens are: ticarcillin- clavulanate, cefoxitin, ertapenem, moxifloxacin, or tigecycline as single-agent therapy or combinations of metronidazole with cefazolin, cefuroxime, ceftriaxone, cefotaxime, levofloxacin, or ciprofloxacin. Agents no longer recommended are: cefotetan and clindamycin ( Bacteroides fragilis group resistance) and ampicillin-sulbactam (E. coli resistance) and ainoglycosides (toxicity).
For high risk community-acquired infections in adults, the agents recommended for empiric regimens are: meropenem, imipenem-cilastatin, doripenem, piperacillin-tazobactam, ciprofloxacin or levofloxacin in combination with metronidazole, or ceftazidime or cefepime in combination with metronidazole. Quinolones should not be used unless hospital surveys indicate >90% susceptibility of "E. coli" to quinolones.
Aztreonam plus metronidazole is an alternative, but addition of an agent effective against gram-positive cocci is recommended. The routine use of an aminoglycoside or another second agent effective against gram-negative facultative and aerobic bacilli is not recommended in the absence of evidence that the infection is caused by resistant organisms that require such therapy.
Empiric use of agents effective against enterococci is recommended and agents effective against methicillin-resistant "S. aureus" (MRSA) or yeast is not recommended in the absence of evidence of infection due to such organisms.
Empiric antibiotic therapy for health care-associated intra-abdominal should be driven by local microbiologic results. Empiric coverage of likely pathogens may require multidrug regimens that include agents with expanded spectra of activity against gram-negative aerobic and facultative bacilli. These include meropenem, imipenem-cilastatin, doripenem, piperacillin-tazobactam, or ceftazidime or cefepime in combination with metronidazole. Aminoglycosides or colistin may be required.
Antimicrobial regimens for children include an aminoglycoside-based regimen, a carbapenem (imipenem, meropenem, or ertapenem), a beta-lactam/beta-lactamase-inhibitor combination (piperacillin-tazobactam or ticarcillin-clavulanate), or an advanced-generation cephalosporin (cefotaxime, ceftriaxone, ceftazidime, or cefepime) with metronidazole.
Clinical judgment, personal experience, safety and patient compliance should direct the physician in the choice of the appropriate antimicrobial agents. The length of therapy generally ranges between 2 and 4 weeks, but should be individualized depending on the response. In some instances treatment may be required for as long as 6–8 weeks, but can often be shortened with proper surgical drainage.
A boil may clear up on its own without bursting, but more often it will need to be opened and drained. This will usually happen spontaneously within two weeks. Regular application of a warm moist compress, both before and after a boil opens, can help speed healing. The area must be kept clean, hands washed after touching it, and any dressings disposed of carefully, in order to avoid spreading the bacteria. A doctor may cut open or "lance" a boil to allow it to drain, but squeezing or cutting should not be attempted at home, as this may further spread the infection. Antibiotic therapy may be recommended for large or recurrent boils or those that occur in sensitive areas (such as the groin, breasts, armpits, around or in the nostrils, or in the ear). Antibiotics should not be used for longer than one month, with at least two months (preferably longer) between uses, otherwise it will lose its effectiveness. If the patient has chronic (more than two years) boils, removal by plastic surgery may be indicated.
Furuncles at risk of leading to serious complications should be incised and drained if antibiotics or steroid injections are not effective. These include furuncles that are unusually large, last longer than two weeks, or occur in the middle of the face or near the spine. Fever and chills are signs of sepsis and indicate immediate treatment is needed.
Staphylococcus aureus has the ability to acquire antimicrobial resistance easily, making treatment difficult. Knowledge of the antimicrobial resistance of "S. aureus" is important in the selection of antimicrobials for treatment.
Treatments involve antibiotics that cover for "Pseudomonas aeruginosa". Antipseudomonal penicillins, aminoglycosides, fluoroquinolones, third generation cephalosporins or aztreonam can be given. Usually, the antibiotics are changed according to the culture and sensitivity result. In patients with very low white blood cell counts, Granulocyte-macrophage colony-stimulating factor may be given. Depending on the causal agents, antivirals or antifungals can be added.
Surgery will be needed if there is extensive necrosis not responding to medical treatments.
"S. pyogenes" infections are best prevented through effective hand hygiene. No vaccines are currently available to protect against "S. pyogenes" infection, although research has been conducted into the development of one. Difficulties in developing a vaccine include the wide variety of strains of "S. pyogenes" present in the environment and the large amount of time and number of people that will be needed for appropriate trials for safety and efficacy of the vaccine.