Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The Infectious Disease Society of America (IDSA) recommends treating uncomplicated methicillin resistant staph aureus (MRSA) bacteremia with a 14-day course of intravenous vancomycin. Uncomplicated bacteremia is defined as having positive blood cultures for MRSA, but having no evidence of endocarditis, no implanted prostheses, negative blood cultures after 2–4 days of treatment, and signs of clinical improvement after 72 hrs.
The antibiotic treatment of choice for streptococcal and enteroccal infections differs by species. However, it is important to look at the antibiotic resistance pattern for each species from the blood culture to better treat infections caused by resistant organisms.
The treatment of gram negative bacteremia is also highly dependent on the causative organism. Empiric antibiotic therapy should be guided by the most likely source of infection and the patient's past exposure to healthcare facilities. In particular, a recent history of exposure to a healthcare setting may necessitate the need for antibiotics with "pseudomonas aeruginosa" coverage or broader coverage for resistant organisms. Extended generation cephalosporins such as ceftriaxone or beta lactam/beta lactam inhibitor antibiotics such as piperacillin-tazobactam are frequently used for the treatment of gram negative bacteremia.
Surgical drainage is usually indicated for prostatic abscesses and septic arthritis, may be indicated for parotid abscesses, and is not usually indicated for hepatosplenic abscesses. In bacteraemic melioidosis unresponsive to intravenous antibiotic therapy, splenectomy has been attempted, but only anecdotal evidence supports this practice.
Prior to 1989, the standard treatment for acute melioidosis was a three-drug combination of chloramphenicol, co-trimoxazole and doxycycline; this regimen is associated with a mortality rate of 80% and is no longer be used unless no other alternatives are available. All three drugs are bacteriostatic (they stop the bacterium from growing, but do not kill it) and the action of co-trimoxazole antagonizes both chloramphenicol and doxycycline.
The major mainstay of treatment for GPS is plasmapheresis, a procedure in which the affected person's blood is sent through a centrifuge and the various components separated based on weight. The plasma, clear liquid part of the blood, contains the anti-GBM antibodies that attack the affected person's lungs and kidneys and is filtered out. The other parts of the blood, that is, the red blood cells, white blood cells, and platelets, are recycled and given intravenously as a replacement fluid. Most individuals affected by the disease also need to be treated with immunosuppressant drugs, especially cyclophosphamide, prednisone, and rituximab, to prevent the formation of new anti-GBM antibodies so as to prevent further damage to the kidneys and lungs. Other, less toxic immunosuppressants such as azathioprine may be used to maintain remission.
With treatment the five-year survival rate is >80% and fewer than 30% of affected individuals require long-term dialysis. A study performed in Australia and New Zealand demonstrated that in patients requiring renal replacement therapy (including dialysis) the median survival time is 5.93 years. Without treatment, virtually every affected person will end up dying from either advanced kidney failure or lung hemorrhages.
The treatment for delirium with medications depends on its cause. Antipsychotics, particularly haloperidol, are the most commonly used drugs for delirium and the most studied. Evidence is weaker for the atypical antipsychotics, such as risperidone, olanzapine and quetiapine. British professional guidelines by the National Institute for Health and Clinical Excellence advise haloperidol or olanzapine. Antipsychotics however are not supported for the treatment or prevention of delirium among those who are in hospital.
Benzodiazepines themselves can cause delirium or worsen it, and there is no reliable evidence for use in non-alcohol-related delirium. If delirium is due to alcohol withdrawal or benzodiazepine withdrawal or if antipsychotics are contraindicated (e.g. in Parkinson's disease or neuroleptic malignant syndrome), then benzodiazepines are recommended. Similarly, people with dementia with Lewy bodies may have significant side-effects to antipsychotics, and should either be treated with a small dose or not at all.
The antidepressant trazodone is occasionally used in the treatment of delirium, but it carries a risk of oversedation, and its use has not been well studied.
Treatment of delirium involves two main strategies: first, treatment of the underlying presumed acute cause or causes; secondly, optimising conditions for the brain. This involves ensuring that the person with delirium has adequate oxygenation, hydration, nutrition, and normal levels of metabolites, that drug effects are minimised, constipation treated, pain treated, and so on. Detection and management of mental stress is also important. Therefore, the traditional concept that the treatment of delirium is 'treat the cause' is not adequate; people with delirium require a highly detailed and expert analysis of all the factors which might be disrupting brain function.
Non medication treatments are the first measure in delirium, unless there is severe agitation that places the person at risk of harming oneself or others. Avoiding unnecessary movement, involving family members, having recognizable faces at the bedside, having means of orientation available (such as a clock and a calendar) may be sufficient in stabilizing the situation. If this is insufficient, verbal and non-verbal de-escalation techniques may be required to offer reassurances and calm the person experiencing delirium. Only if this fails, or if de-escalation techniques are inappropriate, is pharmacological treatment indicated.
“The T-A-DA method (tolerate, anticipate, don't agitate)” can be an effective management technique for older people with delirium. All unnecessary attachments are removed (IVs, catheters, NG tubes) which allows for greater mobility. Patient behavior is tolerated even if it is not considered normal as long as it does not put the patient or other people in danger. This technique requires that patients are isolated in a specific area designated for patients of old age dealing with symptoms of delirium. Patient behavior is anticipated so care givers can plan required care. Patients are treated to reduce agitation. Reducing agitation may mean that patients are not reoriented if reorientation causes agitation.
Physical restraints are occasionally used as a last resort with patients in a severe delirium. Restraint use should be avoided as it can increase agitation and risk of injury. In order to avoid the use of restraints some patients may require constant supervision.
Wissler's syndrome (or Wissler's disease or Wissler-Fanconi syndrome) is a rheumatic disease that has a similar presentation to sepsis. It is sometimes considered closely related to Still's disease. It is named for Guido Fanconi and Hans Wissler It was first described by Wissler in 1944 and Fanconi in 1946. Single observations by E. Uhse in 1943 («Febris maculosa intermittens»), Fykow in 1929 and Nowak in 1942.
Etiology uncertain. Wissler suggested an allergic reaction to bacteraemia as the pathogenic factor.