Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
As of 2010 there was no treatment that addressed the cause of Tay–Sachs disease or could slow its progression; people receive supportive care to ease the symptoms and extend life by reducing the chance of contracting infections. Infants are given feeding tubes when they can no longer swallow. In late-onset Tay–Sachs, medication (e.g., lithium for depression) can sometimes control psychiatric symptoms and seizures, although some medications (e.g., tricyclic antidepressants, phenothiazines, haloperidol, and risperidone) are associated with significant adverse effects.
Currently Sandhoff disease does not have any standard treatment and does not have a cure. However, a person suffering from the disease needs proper nutrition, hydration, and maintenance of clear airways. To reduce some symptoms that may occur with Sandhoff disease, the patient may take anticonvulsants to manage seizures or medications to treat respiratory infections, and consume a precise diet consisting of puree foods due to difficulties swallowing. Infants with the disease usually die by the age of 3 due to respiratory infections. The patient must be under constant surveillance because they can suffer from aspiration or lack the ability to change from the passageway to their lungs versus their stomach and their spit travels to the lungs causing bronchopneumonia. The patient also lacks the ability to cough and therefore must undergo a treatment to shake up their body to remove the mucus from the lining of their lungs. Medication is also given to patients to lessen their symptoms including seizures.
Currently the government is testing several treatments including N-butyl-deoxynojirimycin in mice, as well as stem cell treatment in humans and other medical treatments recruiting test patients.
No specific treatment is known for type A, but symptoms are treated.
In adult patients with type B, physicians try to keep cholesterol levels down to normal levels. If statins are used, they monitor liver function. If the spleen is enlarged and platelet levels low, acute episodes of bleeding may require transfusions of blood products. If they have symptoms of interstitial lung disease, they may need oxygen.
Anecdotally, organ transplant has been attempted with limited success. Future prospects include enzyme replacement and gene therapy. Bone marrow transplant has been tried for type B.
In January 2009, Actelion announced the drug miglustat (Zavesca) had been approved in the European Union for the treatment of progressive neurological manifestations in adult patients and pediatric patients with NPC. The drug is available to patients in the United States on an experimental basis. In March 2010, the FDA requested additional preclinical and clinical information regarding Zavesca from Actelion before making a final decision on approving the drug in the United States for NPC.
No cures for lysosomal storage diseases are known, and treatment is mostly symptomatic, although bone marrow transplantation and enzyme replacement therapy (ERT) have been tried with some success. ERT can minimize symptoms and prevent permanent damage to the body. In addition, umbilical cord blood transplantation is being performed at specialized centers for a number of these diseases. In addition, substrate reduction therapy, a method used to decrease the production of storage material, is currently being evaluated for some of these diseases. Furthermore, chaperone therapy, a technique used to stabilize the defective enzymes produced by patients, is being examined for certain of these disorders. The experimental technique of gene therapy may offer cures in the future.
Ambroxol has recently been shown to increase activity of the lysosomal enzyme glucocerebrosidase, so it may be a useful therapeutic agent for both Gaucher disease and Parkinson's disease. Ambroxol triggers the secretion of lysosomes from cells by inducing a pH-dependent calcium release from acidic calcium stores. Hence, relieving the cell from accumulating degradation products is a proposed mechanism by which this drug may help.
On April 27, 2017, the U.S. Food and Drug Administration approved Brineura (cerliponase alfa) as the first specific treatment for NCL. Brineura is enzyme replacement therapy manufactured through recombinant DNA technology. The active ingredient in Brineura, cerliponase alpha, is intended to slow loss of walking ability in symptomatic pediatric patients 3 years of age and older with late infantile neuronal ceroid lipofuscinosis type 2 (CLN2), also known as tripeptidyl peptidase-1 (TPP1) deficiency. Brineura is administered into the cerebrospinal fluid by infusion via a surgically implanted reservoir and catheter in the head (intraventricular access device).
A painkiller available in several European countries, Flupirtine, has been suggested to possibly slow down the progress of NCL, particularly in the juvenile and late infantile forms. No trial has been officially supported in this venue, however. Currently the drug is available to NCL families either from Germany, Duke University Medical Center in Durham, North Carolina, and the Hospital for Sick Children in Toronto, Ontario.
There are no specific treatments for lipid storage disorders; however, there are some highly effective enzyme replacement therapies for people with type 1 Gaucher disease and some patients with type 3 Gaucher disease. There are other treatments such as the prescription of certain drugs like phenytoin and carbamazepine to treat pain for patients with Fabry disease. Furthermore, gene thereapies and bone marrow transplantation may prove to be effective for certain lipid storage disorders. Diet restrictions do not help prevent the buildup of lipids in the tissues.
As of 2010, even with the best care, children with infantile Tay–Sachs disease usually die by the age of 4.
In 2014 the European Medicines Agency (EMA) granted orphan drug designation to arimoclomol for the treatment of Niemann-Pick type C. This was followed in 2015 by the U.S. Food & Drug Administration (FDA). Dosing in a placebo-controlled phase II/III clinical trial to investigate treatment for Niemann-Pick type C (for patients with both type C1 and C2) using arimoclomol began in 2016.
A more extreme treatment includes kidney or liver transplant from a donor without the condition. The foreign organs will produce a functional version of the defective enzymes and digest the methylmalonic acid, however all of the disadvantages of organ transplantation are of course applicable in this situation. There is evidence to suggest that the central nervous system may metabolize methylmalonic-CoA in a system isolated from the rest of the body. If this is the case, transplantation may not reverse the neurological effects of methylmalonic acid previous to the transplant or prevent further damage to the brain by continued build up.
Treatment for all forms of this condition primarily relies on a low-protein diet, and depending on what variant of the disorder the individual suffers from, various dietary supplements. All variants respond to the levo isomer of carnitine as the improper breakdown of the affected substances results in sufferers developing a carnitine deficiency. The carnitine also assists in the removal of acyl-CoA, buildup of which is common in low-protein diets by converting it into acyl-carnitine which can be excreted in urine. Though not all forms of methylmalonyl acidemia are responsive to cobalamin, cyanocobalamin supplements are often used in first line treatment for this disorder. If the individual proves responsive to both cobalamin and carnitine supplements, then it may be possible for them to ingest substances that include small amounts of the problematic amino acids isoleucine, threonine, methionine, and valine without causing an attack.
Courses of treatment for children with is dependent upon the severity of their case. Children with OHS often receive physical and occupational therapy. They may require a feeding tube to supplement nourishment if they are not growing enough. In an attempt to improve the neurological condition (seizures) copper histidine or copper chloride injections can be given early in the child’s life.
However, copper histidine injections have been shown ineffective in studies of copper metabolic-connective tissue disorders such as OHS.
At present there is no specific treatment. Many patients with haemolytic anaemia take folic acid (vitamin B) since the greater turnover of cells consumes this vitamin. During crises transfusion may be required. Clotting problems can occur for which anticoagulation may be needed. Unlike hereditary spherocytosis, splenectomy is contraindicated.
Sandhoff disease, also known as Sandhoff–Jatzkewitz disease, variant 0 of GM2-Gangliosidosis or Hexosaminidase A and B deficiency, is a lysosomal genetic, lipid storage disorder caused by the inherited deficiency to create functional beta-hexosaminidases A and B. These catabolic enzymes are needed to degrade the neuronal membrane components, ganglioside GM2, its derivative GA2, the glycolipid globoside in visceral tissues, and some oligosaccharides. Accumulation of these metabolites leads to a progressive destruction of the central nervous system and eventually to death. The rare autosomal recessive neurodegenerative disorder is clinically almost indistinguishable from Tay–Sachs disease, another genetic disorder that disrupts beta-hexosaminidases A and S. There are three subsets of Sandhoff disease based on when first symptoms appear: classic infantile, juvenile and adult late onset.
Once a diagnosis is made, the treatment is based on an individual’s clinical condition. Based on the apparent activation of the mTOR pathway, Lucas and colleagues treated patients with rapamycin, an mTOR inhibitor. This effectively reduced hepatosplenomegaly and lymphadenopathy, most likely by restoring the normal balance of naïve, effector, and memory cells in the patients’ immune system. More research is needed to determine the most effective timing and dosage of this medication and to investigate other treatment options. Investigators at the National Institute of Allergy and Infectious Diseases at the US National Institutes of Health currently have clinical protocols to study new approaches to the diagnosis and treatment of this disorder.
No treatment is available for most of these disorders. Mannose supplementation relieves the symptoms in PMI-CDG (CDG-Ib) for the most part, even though the hepatic fibrosis may persist. Fucose supplementation has had a partial effect on some SLC35C1-CDG (CDG-IIc or LAD-II) patients.
The majority of patients is initially screened by enzyme assay, which is the most efficient method to arrive at a definitive diagnosis. In some families where the disease-causing mutations are known and in certain genetic isolates, mutation analysis may be performed. In addition, after a diagnosis is made by biochemical means, mutation analysis may be performed for certain disorders.
In common forms of MTHFR deficiency, elevated plasma homocysteine levels have sometimes been treated with Vitamin B12 and low doses of folic acid. Although this treatment significantly decreases the serum levels of homocysteine, this treatment is not thought to improve health outcomes.
Due to the ineffectiveness of these treatments, it is no-longer considered clinically useful to test for MTHFR in most cases of thrombophilia or recurrent pregnancy loss.
Sandhoff disease is a rare, autosomal recessive metabolic disorder that causes progressive destruction of nerve cells in the brain and spinal cord. The disease results from mutations on chromosome 5 in the HEXB gene, critical for the lysosomal enzymes beta-N-acetylhexosaminidase A and B. Sandhoff Disease is clinically indistinguishable from Tay-Sachs Disease. The most common form, infantile Sandhoff disease, is usually fatal by early childhood.
Tay–Sachs disease is a rare autosomal recessive genetic disorder that causes a progressive deterioration of nerve cells and of mental and physical abilities that begins around six months of age and usually results in death by the age of four. It is the most common of the GM2 gangliosidoses. The disease occurs when harmful quantities of cell membrane gangliosides accumulate in the brain's nerve cells, eventually leading to the premature death of the cells.
GM2-gangliosidosis, AB variant is a rare, autosomal recessive metabolic disorder that causes progressive destruction of nerve cells in the brain and spinal cord. It has a similar pathology to Sandhoff disease and Tay-Sachs disease. The three diseases are classified together as the GM2 gangliosidoses, because each disease represents a distinct molecular point of failure in the activation of the same enzyme, beta-hexosaminidase. AB variant is caused by a failure in the gene that makes an enzyme cofactor for beta-hexosaminidase, called the GM2 activator.
A lipid storage disorder (or lipidosis) can be any one of a group of inherited metabolic disorders in which harmful amounts of fats or lipids accumulate in some of the body’s cells and tissues. People with these disorders either do not produce enough of one of the enzymes needed to metabolize and break down lipids or they produce enzymes that do not work properly. Over time, this excessive storage of fats can cause permanent cellular and tissue damage, particularly in the brain, peripheral nervous system, liver, spleen and bone marrow.
Inside cells under normal conditions, lysosomes convert, or metabolize, lipids and proteins into smaller components to provide energy for the body.
Signs and symptoms of GM2-gangliosidosis, AB variant are identical with those of infantile Tay-Sachs disease, except that enzyme assay testing shows normal levels of hexosaminidase A. Infantile Sandhoff disease has similar symptoms and prognosis, except that there is deficiency of both hexosaminidase A and hexosaminidase B. Infants with this disorder typically appear normal until the age of 3 to 6 months, when development slows and muscles used for movement weaken. Affected infants lose motor skills such as turning over, sitting, and crawling. As the disease progresses, infants develop seizures, vision and hearing loss, mental retardation, and paralysis.
An ophthalmological abnormality called a cherry-red spot, which can be identified with an eye examination, is characteristic of this disorder. This cherry-red spot is the same finding that Warren Tay first reported in 1881, when he identified a case of Tay-Sachs disease, and it has the same etiology.
The prognosis for AB variant is the same as for infantile Tay-Sachs disease. Children with AB variant die in infancy or early childhood.
Gangliosidosis contains different types of lipid storage disorders caused by the accumulation of lipids known as gangliosides. There are two distinct genetic causes of the disease. Both are autosomal recessive and affect males and females equally.
Patients presenting with this disease undergo antibiotic treatment and gammaglobulin transfusions. Antibiotics are used to fight off the pathogenic organisms and the gammaglobulin helps provide a normal balance of antibodies to fight the infection. Bone marrow transplantation may be an option in some cases.
OMIM: 308230