Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The two classes of antiviral drugs used against influenza are neuraminidase inhibitors (oseltamivir and zanamivir) and M2 protein inhibitors (adamantane derivatives).
Overall the benefits of neuraminidase inhibitors in those who are otherwise healthy do not appear to be greater than the risks. There does not appear to be any benefit in those with other health problems. In those believed to have the flu, they decreased the length of time symptoms were present by slightly less than a day but did not appear to affect the risk of complications such as needing hospitalization or pneumonia. Previous to 2013 the benefits were unclear as the manufacturer (Roche) refused to release trial data for independent analysis. Increasingly prevalent resistance to neuraminidase inhibitors has led to researchers to seek alternative antiviral drugs with different mechanisms of action.
In terms of treatment, ribavirin is not registered for hepatitis E treatment, though off-label experience for treating chronic hepatitis E with this compound exists. The use of low doses of ribavirin over a three-month period has been associated with viral clearance in about two-thirds of chronic cases. Other possible treatments include pegylated interferon or a combination of ribavirin and pegylated interferon. In general, chronic HEV infection is associated with immunosuppressive therapies, but remarkably little is known about how different immunosuppressants affect HEV infection. In individuals with solid-organ transplantation, viral clearance can be achieved by temporal reduction of the level of immunosuppression.
If a person becomes sick with swine flu, antiviral drugs can make the illness milder and make the patient feel better faster. They may also prevent serious flu complications. For treatment, antiviral drugs work best if started soon after getting sick (within two days of symptoms). Beside antivirals, supportive care at home or in a hospital focuses on controlling fevers, relieving pain and maintaining fluid balance, as well as identifying and treating any secondary infections or other medical problems. The U.S. Centers for Disease Control and Prevention recommends the use of oseltamivir (Tamiflu) or zanamivir (Relenza) for the treatment and/or prevention of infection with swine influenza viruses; however, the majority of people infected with the virus make a full recovery without requiring medical attention or antiviral drugs. The virus isolated in the 2009 outbreak have been found resistant to amantadine and rimantadine.
In the U.S., on April 27, 2009, the FDA issued Emergency Use Authorizations to make available Relenza and Tamiflu antiviral drugs to treat the swine influenza virus in cases for which they are currently unapproved. The agency issued these EUAs to allow treatment of patients younger than the current approval allows and to allow the widespread distribution of the drugs, including by volunteers.
Cats can be protected from H5N1 if they are given a vaccination, as mentioned above. However, it was also found that cats can still shed some of the virus but in low numbers.
If a cat is exhibiting symptoms, they should be put into isolation and kept indoors. Then they should be taken to a vet to get tested for the presence of H5N1. If there is a possibility that the cat has Avian Influenza, then there should be extra care when handling the cat. Some of the precautions include avoiding all direct contact with the cat by wearing gloves, masks, and goggles. Whatever surfaces the cat comes in contact with should be disinfected with standard household cleaners.
They have given tigers an antiviral treatment of Oseltamivir with a dose of 75 mg/60 kg two times a day. The specific dosage was extrapolated from human data, but there hasn't been any data to suggest protection. As with many antiviral treatments, the dosage depends on the species.
As swine influenza is rarely fatal to pigs, little treatment beyond rest and supportive care is required. Instead, veterinary efforts are focused on preventing the spread of the virus throughout the farm, or to other farms. Vaccination and animal management techniques are most important in these efforts. Antibiotics are also used to treat this disease, which although they have no effect against the influenza virus, do help prevent bacterial pneumonia and other secondary infections in influenza-weakened herds.
No specific treatment is available, but antibiotics can be used to prevent secondary infections.
Vaccines are available (ATCvet codes: for the inactivated vaccine, for the live vaccine; plus various combinations).
Biosecurity protocols including adequate isolation, disinfection are important in controlling the spread of the disease.
The current medical treatments for aggressive invasive aspergillosis include voriconazole and liposomal amphotericin B in combination with surgical debridement.
For the less aggressive allergic bronchopulmonary aspergillosis findings suggest the use of oral steroids for a prolonged period of time, preferably for 6–9 months in allergic aspergillosis of the lungs. Itraconazole is given with the steroids, as it is considered to have a "steroid sparing" effect, causing the steroids to be more effective, allowing a lower dose.,
Other drugs used, such as amphotericin B, caspofungin (in combination therapy only), flucytosine (in combination therapy only), or itraconazole,
are used to treat this fungal infection. However, a growing proportion of infections are resistant to the triazoles. "A. fumigatus", the most commonly infecting species, is intrinsically resistant to fluconazole.
Prevention of aspergillosis involves a reduction of mold exposure via environmental infection-control. Anti-fungal prophylaxis can be given to high-risk patients. Posaconazole is often given as prophylaxis in severely immunocompromised patients.
The infection is treated with antibiotics. Tetracyclines and chloramphenicol are the drugs of choice for treating patients with psittacosis. Most persons respond to oral therapy doxycycline, tetracycline hydrochloride, or chloramphenicol palmitate. For initial treatment of severely ill patients, doxycycline hyclate may be administered intravenously. Remission of symptoms usually is evident within 48–72 hours. However, relapse can occur, and treatment must continue for at least 10–14 days after fever abates.
Some ways to prevent airborne diseases include washing hands, using appropriate hand disinfection, getting regular immunizations against diseases believed to be locally present, wearing a respirator and limiting time spent in the presence of any patient likely to be a source of infection.
Exposure to a patient or animal with an airborne disease does not guarantee receiving the disease. Because of the changes in host immunity and how much the host was exposed to the particles in the air makes a difference to how the disease affects the body.
Antibiotics are not prescribed for patients to control viral infections. They may however be prescribed to a flu patient for instance, to control or prevent bacterial secondary infections. They also may be used in dealing with air-borne bacterial primary infections, such as pneumonic plague.
Additionally the Centers for Disease Control and Prevention (CDC) has told consumers about vaccination and following careful hygiene and sanitation protocols for airborne disease prevention. Consumers also have access to preventive measures like UV Air purification devices that FDA and EPA-certified laboratory test data has verified as effective in inactivating a broad array of airborne infectious diseases. Many public health specialists recommend social distancing to reduce the transmission of airborne infections.
BFL symptoms improve in the absence of the bird proteins which caused the disease. Therefore, it is advisable to remove all birds, bedding and pillows containing feathers from the house as well as washing all soft furnishings, walls, ceilings and furniture. Certain small mammals kept as pets have the same or similar proteins in their fur and feces and so should be removed. Peak flow measurements will indicate a lung condition however a spirometric test on lung capacity and patients ability to move air in and out of the lungs plus in more advanced cases an X-ray test or CT scan is available to confirm whether someone has the disease or not. Steroid inhalers similar to those used for asthma are effective or in cases where the patient finds inhaling difficult high dosages of steroids combined with bone density protecting drugs are used to treat a person with BFL, reducing the inflammation and hopefully preventing scarring. Recovery varies from patient to patient depending on what stage the condition was at when the patient consulted the doctor, the speed of diagnosis and application of the appropriate treatment to prevent residual damage to the lungs and many make a full recovery. However, BFL may reoccur when in contact with birds or other allergens.
There is no cure for EEE. Treatment consists of corticosteroids, anticonvulsants, and supportive measures (treating symptoms) such as intravenous fluids, tracheal intubation, and antipyretics. About four percent of humans known to be infected develop symptoms, with a total of about six cases per year in the US. A third of these cases die, and many survivors suffer permanent brain damage.
The best treatment is to avoid the provoking allergen, as chronic exposure can cause permanent damage. Corticosteroids such as prednisolone may help to control symptoms but may produce side-effects.
A vaccine based on recombinant viral proteins was developed in the 1990s and tested in a high-risk population (in Nepal) in 2001. The vaccine appeared to be effective and safe, but development was stopped for lack of profitability, since hepatitis E is rare in developed countries. No hepatitis E vaccine is licensed for use in the United States.
Although other HEV vaccine trials have been successful, these vaccines have not yet been produced or made available to susceptible populations. The exception is China; after more than a year of scrutiny and inspection by China's State Food and Drug Administration (SFDA), a hepatitis E vaccine developed by Chinese scientists was available at the end of 2012. The vaccine—called HEV 239 by its developer Xiamen Innovax Biotech—was approved for prevention of hepatitis E in 2012 by the Chinese Ministry of Science and Technology, following a controlled trial on 100,000+ people from Jiangsu Province where none of those vaccinated became infected during a 12-month period, compared to 15 in the group given placebo. The first vaccine batches came out of Innovax' factory in late October 2012, to be sold to Chinese distributors.
Due to the lack of evidence, WHO did not make a recommendation regarding routine use of the HEV 239 vaccine. National authorities may however, decide to use the vaccine based on the local epidemiology.
The disease can be prevented in horses with the use of vaccinations. These vaccinations are usually given together with vaccinations for other diseases, most commonly WEE, VEE, and tetanus. Most vaccinations for EEE consist of the killed virus. For humans there is no vaccine for EEE so prevention involves reducing the risk of exposure. Using repellent, wearing protective clothing, and reducing the amount of standing water is the best means for prevention
The presence of avian botulism is extremely hard to detect before an outbreak. Frequent surveillance of sites at risk is needed for early detection of the disease in order to take action and remove carcasses. Vaccines are also developed, but they are expected to have limited effectiveness in stemming outbreaks in wild waterbird populations. However may be effective in reducing mortality for endangered island waterfowl and small non-migratory wild populations. Field tests are needed.
The most efficient treatment in breeding flocks or laying hens is individual intramuscular injections of a long-acting tetracycline, with the same antibiotic in drinking water, simultaneously. The mortality and clinical signs will stop within one week, but the bacteria might remain present in the flock.
Prevention and control programs must take into account local understandings of people-poultry relations. In the past, programs that have focused on singular, place-based understandings of disease transmission have been ineffective. In the case of Northern Vietnam, health workers saw poultry as commodities with an environment that was under the control of people. Poultry existed in the context of farms, markets, slaughterhouses, and roads while humans were indirectly the primary transmitters of avian flu, placing the burden of disease control on people. However, farmers saw their free ranging poultry in an environment dominated by nonhuman forces that they could not exert control over. There were a host of nonhuman actors such as wild birds and weather patterns whose relationships with the poultry fostered the disease and absolved farmers of complete responsibility for disease control.
Attempts at singular, place-based controls sought to teach farmers to identify areas where their behavior could change without looking at poultry behaviors. Behavior recommendations by Vietnam's National Steering Committee for Avian Influenza Control and Prevention (NSCAI) were drawn from the FAO Principles of Biosecurity. These included restrictions from entering areas where poultry are kept by erecting barriers to segregate poultry from non-human contact, limits on human movement of poultry and poultry-related products ideally to transporters, and recommendations for farmers to wash hands and footwear before and after contact with poultry. Farmers, pointed to wind and environmental pollution as reasons poultry would get sick. NSCAI recommendations also would disrupt longstanding livestock production practices as gates impede sales by restricting assessment of birds by appearance and offend customers by limiting outside human contact. Instead of incorporating local knowledge into recommendations, cultural barriers were used as scapegoats for failed interventions. Prevention and control methods have been more effective when also considering the social, political, and ecological agents in play.
For precious animals ;
- Repeat screening, case management to abate sources
- Medical and environmental evaluation,
- veterinary evaluation, chelation, case management
- If necessary, veterinary hospitalization, immediate chelation, case management.
The mainstays of treatment are removal from the source of lead and, for precious animals who have significantly high blood lead levels or who have symptoms of poisoning, chelation therapy with a chelating agent.
Cats with Avian Influenza exhibit symptoms that can result in death. They are one of the few species that can get Avian Influenza. The specific virus that they get is H5N1, which is a subtype of Avian Influenza. In order to get the virus, cats need to be in contact with waterfowl, poultry, or uncooked poultry that are infected. Two of the main organs that the virus affects are the lungs and liver.
Culling is used in order to decrease the threat of avian influenza transmission by killing potentially infected birds. The FAO manual on HPAI control recommends a zoning strategy which begins with the identification of an infected area (IA) where sick or dead birds have tested positive. All poultry in this zone are culled while the area 1 to 5 km from the outer boundary of the IA is considered the restricted area (RA) placed under strict surveillance. 2 to 10 km from the RA is the control area (CA) that serves as a buffer zone in case of spread. Culling is not recommended beyond the IA unless there is evidence of spread. The manual, however, also provides examples of how control was carried out between 2004 and 2005 to contain H5N1 where all poultry was to be stamped out in a 3 km radius beyond the infected point and beyond that a 5 km radius where all fowl was to be vaccinated. This culling method was indiscriminate as a large proportion of the poultry inside these areas were small backyard flocks which did not travel great enough distances to carry infection to adjacent villages without human effort and may have not been infected at all. Between 2004 and 2005, over 100 million chickens were culled in Asia to contain H5N1.
The risk of mass culling of birds and the resulting economic impact led farmers who were reluctant to report sick poultry. The culls often preempted actual lab testing for H5N1 as avian flu policy justified sacrificing poultry as a safeguard against HPAI spread. In response to these policies, farmers in Vietnam between 2003 and 2004 became more and more unwilling to surrender apparently healthy birds to authorities and stole poultry destined for culls as it stripped poultry of their biosocial and economic worth. By the end of 2005, the government implemented a new policy that targeted high-risk flock in the immediate vicinity of infected farms and instituted voluntary culling with compensation in the case of a local outbreak.
Not only did culling result in severe economic impacts especially for small scale farmers, culling itself may be an ineffective preventative measure. In the short-term, mass culling achieves its goals of limiting the immediate spread of HPAI, it has been found to impede the evolution of host resistance which is important for the long-term success of HPAI control. Mass culling also selects for elevated influenza virulence and results in the greater mortality of birds overall. Effective culling strategies must be selective as well as considerate of economic impacts to optimize epidemiological control and minimize economic and agricultural destruction.
Neuraminidase inhibitors may be used to treat viral pneumonia caused by influenza viruses (influenza A and influenza B). No specific antiviral medications are recommended for other types of community acquired viral pneumonias including SARS coronavirus, adenovirus, hantavirus, and parainfluenza virus. Influenza A may be treated with rimantadine or amantadine, while influenza A or B may be treated with oseltamivir, zanamivir or peramivir. These are of most benefit if they are started within 48 hours of the onset of symptoms. Many strains of H5N1 influenza A, also known as avian influenza or "bird flu", have shown resistance to rimantadine and amantadine. The use of antibiotics in viral pneumonia is recommended by some experts, as it is impossible to rule out a complicating bacterial infection. The British Thoracic Society recommends that antibiotics be withheld in those with mild disease. The use of corticosteroids is controversial.
Treatment of CAP in children depends on the child's age and the severity of illness. Children under five are not usually treated for atypical bacteria. If hospitalization is not required, a seven-day course of amoxicillin is often prescribed, with co-trimaxazole an alternative when there is allergy to penicillins. Further studies are needed to confirm the efficacy of newer antibiotics. With the increase in drug-resistant Streptococcus pneumoniae, antibiotics such as cefpodoxime may become more popular. Hospitalized children receive intravenous ampicillin, ceftriaxone or cefotaxime, and a recent study found that a three-day course of antibiotics seems sufficient for most mild-to-moderate CAP in children.
Most newborn infants with CAP are hospitalized, receiving IV ampicillin and gentamicin for at least ten days to treat the common causative agents "streptococcus agalactiae", "listeria monocytogenes" and "escherichia coli". To treat the herpes simplex virus, IV acyclovir is administered for 21 days.