Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Antibiotic treatments for one to three days shorten the course of the disease and reduce the severity of the symptoms. Use of antibiotics also reduces fluid requirements. People will recover without them, however, if sufficient hydration is maintained. The World Health Organization only recommends antibiotics in those with severe dehydration.
Doxycycline is typically used first line, although some strains of "V. cholerae" have shown resistance. Testing for resistance during an outbreak can help determine appropriate future choices. Other antibiotics proven to be effective include cotrimoxazole, erythromycin, tetracycline, chloramphenicol, and furazolidone. Fluoroquinolones, such as ciprofloxacin, also may be used, but resistance has been reported.
Antibiotics improve outcomes in those who are both severely and not severely dehydrated. Azithromycin and tetracycline may work better than doxycycline or ciprofloxacin.
The most common error in caring for patients with cholera is to underestimate the speed
and volume of fluids required. In most cases, cholera can be successfully treated with oral rehydration therapy (ORT), which is highly effective, safe, and simple to administer. Rice-based solutions are preferred to glucose-based ones due to greater efficiency. In severe cases with significant dehydration, intravenous rehydration may be necessary. Ringer's lactate is the preferred solution, often with added potassium. Large volumes and continued replacement until diarrhea has subsided may be needed. Ten percent of a person's body weight in fluid may need to be given in the first two to four hours. This method was first tried on a mass scale during the Bangladesh Liberation War, and was found to have much success. Despite widespread beliefs, fruit juices and commercial fizzy drinks like cola, are not ideal for rehydration of people with serious infections of the intestines, and their excessive sugar content may even harm water uptake.
If commercially produced oral rehydration solutions are too expensive or difficult to obtain, solutions can be made. One such recipe calls for 1 liter of boiled water, 1/2 teaspoon of salt, 6 teaspoons of sugar, and added mashed banana for potassium and to improve taste.
Antibiotic treatment only has a marginal effect on the duration of symptoms, and its use is not recommended except in high-risk patients with clinical complications.
Erythromycin can be used in children, and tetracycline in adults. Some studies show, however, that erythromycin rapidly eliminates "Campylobacter" from the stool without affecting the duration of illness. Nevertheless, children with dysentery due to "C. jejuni" benefit from early treatment with erythromycin. Treatment with antibiotics, therefore, depends on the severity of symptoms. Quinolones are effective if the organism is sensitive, but high rates of quinolone use in livestock means that quinolones are now largely ineffective.
Antimotility agents, such as loperamide, can lead to prolonged illness or intestinal perforation in any invasive diarrhea, and should be avoided. Trimethoprim/sulfamethoxazole and ampicillin are ineffective against "Campylobacter".
The most efficient treatment in breeding flocks or laying hens is individual intramuscular injections of a long-acting tetracycline, with the same antibiotic in drinking water, simultaneously. The mortality and clinical signs will stop within one week, but the bacteria might remain present in the flock.
The infection is usually self-limiting, and in most cases, symptomatic treatment by liquid and electrolyte replacement is enough in human infections.
The two classes of antiviral drugs used against influenza are neuraminidase inhibitors (oseltamivir and zanamivir) and M2 protein inhibitors (adamantane derivatives).
The infection is treated with antibiotics. Tetracyclines and chloramphenicol are the drugs of choice for treating patients with psittacosis. Most persons respond to oral therapy doxycycline, tetracycline hydrochloride, or chloramphenicol palmitate. For initial treatment of severely ill patients, doxycycline hyclate may be administered intravenously. Remission of symptoms usually is evident within 48–72 hours. However, relapse can occur, and treatment must continue for at least 10–14 days after fever abates.
People with the flu are advised to get plenty of rest, drink plenty of liquids, avoid using alcohol and tobacco and, if necessary, take medications such as acetaminophen (paracetamol) to relieve the fever and muscle aches associated with the flu. Children and teenagers with flu symptoms (particularly fever) should avoid taking aspirin during an influenza infection (especially influenza type B), because doing so can lead to Reye's syndrome, a rare but potentially fatal disease of the liver. Since influenza is caused by a virus, antibiotics have no effect on the infection; unless prescribed for secondary infections such as bacterial pneumonia. Antiviral medication may be effective, if given early, but some strains of influenza can show resistance to the standard antiviral drugs and there is concern about the quality of the research.
If a person becomes sick with swine flu, antiviral drugs can make the illness milder and make the patient feel better faster. They may also prevent serious flu complications. For treatment, antiviral drugs work best if started soon after getting sick (within two days of symptoms). Beside antivirals, supportive care at home or in a hospital focuses on controlling fevers, relieving pain and maintaining fluid balance, as well as identifying and treating any secondary infections or other medical problems. The U.S. Centers for Disease Control and Prevention recommends the use of oseltamivir (Tamiflu) or zanamivir (Relenza) for the treatment and/or prevention of infection with swine influenza viruses; however, the majority of people infected with the virus make a full recovery without requiring medical attention or antiviral drugs. The virus isolated in the 2009 outbreak have been found resistant to amantadine and rimantadine.
In the U.S., on April 27, 2009, the FDA issued Emergency Use Authorizations to make available Relenza and Tamiflu antiviral drugs to treat the swine influenza virus in cases for which they are currently unapproved. The agency issued these EUAs to allow treatment of patients younger than the current approval allows and to allow the widespread distribution of the drugs, including by volunteers.
As swine influenza is rarely fatal to pigs, little treatment beyond rest and supportive care is required. Instead, veterinary efforts are focused on preventing the spread of the virus throughout the farm, or to other farms. Vaccination and animal management techniques are most important in these efforts. Antibiotics are also used to treat this disease, which although they have no effect against the influenza virus, do help prevent bacterial pneumonia and other secondary infections in influenza-weakened herds.
If diarrhea becomes severe (typically defined as three or more loose stools in an eight-hour period), especially if associated with nausea, vomiting, abdominal cramps, fever, or blood in stools, medical treatment should be sought. Such patients may benefit from antimicrobial therapy. A 2000 literature review found that antibiotic treatment shortens the duration and severity of TD; most reported side effects were minor, or resolved on stopping the antibiotic.
Fluoroquinolone antibiotics are the drugs of choice. Trimethoprim–sulfamethoxazole and doxycycline are no longer recommended because of high levels of resistance to these agents. Antibiotics are typically given for three to five days, but single doses of azithromycin or levofloxacin have been used. Rifaximin is approved in the U.S. for treatment of TD caused by ETEC. If diarrhea persists despite therapy, travelers should be evaluated for bacterial strains resistant to the prescribed antibiotic, possible viral or parasitic infections, bacterial or amoebic dysentery, "Giardia", helminths, or cholera.
Antimotility drugs such as loperamide and diphenoxylate reduce the symptoms of diarrhea by slowing transit time in the gut. They may be taken to slow the frequency of stools, but not enough to stop bowel movements completely, which delays expulsion of the causative organisms from the intestines. They should be avoided in patients with fever, bloody diarrhea, and possible inflammatory diarrhea. Adverse reactions may include nausea, vomiting, abdominal pain, hives or rash, and loss of appetite. Antimotility agents should not, as a rule, be taken by children under age two.
Cats can be protected from H5N1 if they are given a vaccination, as mentioned above. However, it was also found that cats can still shed some of the virus but in low numbers.
If a cat is exhibiting symptoms, they should be put into isolation and kept indoors. Then they should be taken to a vet to get tested for the presence of H5N1. If there is a possibility that the cat has Avian Influenza, then there should be extra care when handling the cat. Some of the precautions include avoiding all direct contact with the cat by wearing gloves, masks, and goggles. Whatever surfaces the cat comes in contact with should be disinfected with standard household cleaners.
They have given tigers an antiviral treatment of Oseltamivir with a dose of 75 mg/60 kg two times a day. The specific dosage was extrapolated from human data, but there hasn't been any data to suggest protection. As with many antiviral treatments, the dosage depends on the species.
As the infection is usually transmitted into humans through animal bites, antibiotics usually treat the infection, but medical attention should be sought if the wound is severely swelling. Pasteurellosis is usually treated with high-dose penicillin if severe. Either tetracycline or chloramphenicol provides an alternative in beta-lactam-intolerant patients. However, it is most important to treat the wound.
When infection attacks the body, "anti-infective" drugs can suppress the infection. Several broad types of anti-infective drugs exist, depending on the type of organism targeted; they include antibacterial (antibiotic; including antitubercular), antiviral, antifungal and antiparasitic (including antiprotozoal and antihelminthic) agents. Depending on the severity and the type of infection, the antibiotic may be given by mouth or by injection, or may be applied topically. Severe infections of the brain are usually treated with intravenous antibiotics. Sometimes, multiple antibiotics are used in case there is resistance to one antibiotic. Antibiotics only work for bacteria and do not affect viruses. Antibiotics work by slowing down the multiplication of bacteria or killing the bacteria. The most common classes of antibiotics used in medicine include penicillin, cephalosporins, aminoglycosides, macrolides, quinolones and tetracyclines.
Not all infections require treatment, and for many self-limiting infections the treatment may cause more side-effects than benefits. Antimicrobial stewardship is the concept that healthcare providers should treat an infection with an antimicrobial that specifically works well for the target pathogen for the shortest amount of time and to only treat when there is a known or highly suspected pathogen that will respond to the medication.
Antiemetic medications may be helpful for treating vomiting in children. Ondansetron has some utility, with a single dose being associated with less need for intravenous fluids, fewer hospitalizations, and decreased vomiting. Metoclopramide might also be helpful. However, the use of ondansetron might possibly be linked to an increased rate of return to hospital in children. The intravenous preparation of ondansetron may be given orally if clinical judgment warrants. Dimenhydrinate, while reducing vomiting, does not appear to have a significant clinical benefit.
Antibiotics are not usually used for gastroenteritis, although they are sometimes recommended if symptoms are particularly severe or if a susceptible bacterial cause is isolated or suspected. If antibiotics are to be employed, a macrolide (such as azithromycin) is preferred over a fluoroquinolone due to higher rates of resistance to the latter. Pseudomembranous colitis, usually caused by antibiotic use, is managed by discontinuing the causative agent and treating it with either metronidazole or vancomycin. Bacteria and protozoans that are amenable to treatment include "Shigella" "Salmonella typhi", and "Giardia" species. In those with "Giardia" species or "Entamoeba histolytica", tinidazole treatment is recommended and superior to metronidazole. The World Health Organization (WHO) recommends the use of antibiotics in young children who have both bloody diarrhea and fever.
The presence of avian botulism is extremely hard to detect before an outbreak. Frequent surveillance of sites at risk is needed for early detection of the disease in order to take action and remove carcasses. Vaccines are also developed, but they are expected to have limited effectiveness in stemming outbreaks in wild waterbird populations. However may be effective in reducing mortality for endangered island waterfowl and small non-migratory wild populations. Field tests are needed.
Immunocompetent individuals with cryptosporidiosis typically suffer a short (i.e., duration of less than 2 weeks) self-limiting course of diarrhea that may require symptomatic treatment and ends with spontaneous recovery; in some circumstances, antiparasitic medication may be required (e.g., recurrent, severe, or persistent symptoms); however reinfection frequently occurs.
, nitazoxanide is the only antiparasitic drug treatment with proven efficacy for cryptosporidiosis in immunocompetent individuals; however, it lacks efficacy in severely immunocompromised patients. Certain agents such as paromomycin and azithromycin are sometimes used as well, but they only have partial efficacy.
Symptomatic treatment primarily involves fluid rehydration, electrolyte replacement (sodium, potassium, bicarbonate, and glucose), and antimotility agents (e.g., loperamide). Supplemental zinc may improve symptoms, particularly in recurrent or persistent infections or in others at risk for zinc deficiency.
Fowl cholera is also called avian cholera, avian pasteurellosis, avian hemorrhagic septicemia.
It is the most common pasteurellosis of poultry. As the causative agent is "Pasteurella multocida", it is considered as a zoonosis.
Adult birds and old chickens are more susceptible. In parental flocks, cocks are far more susceptible than hens.
Besides chickens, the disease also concerns turkeys, ducks, geese, raptors, and canaries. Turkeys are particularly sensitive, with mortality ranging to 65%.
The recognition of this pathological condition is of ever increasing importance for differential diagnosis with avian influenza.
No specific treatment is available, but antibiotics can be used to prevent secondary infections.
Vaccines are available (ATCvet codes: for the inactivated vaccine, for the live vaccine; plus various combinations).
Biosecurity protocols including adequate isolation, disinfection are important in controlling the spread of the disease.
There are two drugs available, praziquantel and oxamniquine, for the treatment of schistosomiasis. They are considered equivalent in relation to efficacy against "S. mansoni" and safety. Because of praziquantel's lower cost per treatment, and oxaminiquine's lack of efficacy against the urogenital form of the disease caused by "S. haematobium", in general praziquantel is considered the first option for treatment. The treatment objective is to cure the disease and to prevent the evolution of the acute to the chronic form of the disease. All cases of suspected schistosomiasis should be treated regardless of presentation because the adult parasite can live in the host for years.
Schistosomiasis is treatable by taking by mouth a single dose of the drug praziquantel annually.
The WHO has developed guidelines for community treatment based on the impact the disease has on children in villages in which it is common:
- When a village reports more than 50 percent of children have blood in their urine, everyone in the village receives treatment.
- When 20 to 50 percent of children have bloody urine, only school-age children are treated.
- When fewer than 20 percent of children have symptoms, mass treatment is not implemented.
Other possible treatments include a combination of praziquantel with metrifonate, artesunate, or mefloquine. A Cochrane review found tentative evidence that when used alone, metrifonate was as effective as praziquantel.
Another agent, mefloquine, which has previously been used to treat and prevent malaria, was recognised in 2008–2009 to be effective against "Schistosoma".
There is no cure for EEE. Treatment consists of corticosteroids, anticonvulsants, and supportive measures (treating symptoms) such as intravenous fluids, tracheal intubation, and antipyretics. About four percent of humans known to be infected develop symptoms, with a total of about six cases per year in the US. A third of these cases die, and many survivors suffer permanent brain damage.
There is currently no effective marburgvirus-specific therapy for MVD. Treatment is primarily supportive in nature and includes minimizing invasive procedures, balancing fluids and electrolytes to counter dehydration, administration of anticoagulants early in infection to prevent or control disseminated intravascular coagulation, administration of procoagulants late in infection to control hemorrhaging, maintaining oxygen levels, pain management, and administration of antibiotics or antimycotics to treat secondary infections. Experimentally, recombinant vesicular stomatitis Indiana virus (VSIV) expressing the glycoprotein of MARV has been used successfully in nonhuman primate models as post-exposure prophylaxis. Novel, very promising, experimental therapeutic regimens rely on antisense technology: phosphorodiamidate morpholino oligomers (PMOs) targeting the MARV genome could prevent disease in nonhuman primates. Leading medications from Sarepta and Tekmira both have been successfully used in European humans as well as primates.