Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is no known cure to BVVL however a Dutch group have reported the first promising attempt at treatment of the disorder with high doses of riboflavin. This Riboflavin protocol seems to be beneficial in almost all cases. Specialist medical advice is of course essential to ensure the protocol is understood and followed correctly.
Patients will almost certainly require additional symptomatic treatment and supportive care. This must be specifically customized to the needs of the individual but could include mobility aids, hearing aids or cochlear implants, vision aids, gastrostomy feeding and assisted ventilation, while steroids may or may not help patients.
The first report of BVVL syndrome in Japanese literature was of a woman that had BVVL and showed improvement after such treatments. The patient was a sixty-year-old woman who had symptoms such as sensorineural deafness, weakness, and atrophy since she was 15 years old. Around the age of 49 the patient was officially diagnosed with BVVL, incubated, and then attached to a respirator to improve her CO2 narcosis. After the treatments, the patient still required respiratory assistance during sleep; however, the patient no longer needed assistance by a respirator during the daytime.
There is currently no cure for SCA 6; however, there are supportive treatments that may be useful in managing symptoms.
Treatment for MSS is symptomatic and supportive including physical and occupational therapy, speech therapy, and special education. Cataracts must be removed when vision is impaired, generally in the first decade of life. Hormone replacement therapy is needed if hypogonadism is present.
In terms of a cure there is currently none available, however for the disease to manifest itself, it requires mutant gene expression. Manipulating the use of protein homoestasis regulators can be therapuetic agents, or a treatment to try and correct an altered function that makes up the pathology is one current idea put forth by Bushart, et al. There is some evidence that for SCA1 and two other polyQ disorders that the pathology can be reversed after the disease is underway. There is no effective treatments that could alter the progression of this disease, therefore care is given, like occupational and physical therapy for gait dysfunction and speech therapy.
Currently, no treatment slows the neurodegeneration in any of the neuroacanthocytosis disorders. Medication may be administered to decrease the involuntary movements produced by these syndromes. Antipsychotics are used to block dopamine, anticonvulsants treat seizures and botulinum toxin injections may control dystonia. Patients usually receive speech, occupational and physical therapies to help with the complications associated with movement. Sometimes, physicians will prescribe antidepressants for the psychological problems that accompany neuroacanthocytosis. Some success has been reported with Deep brain stimulation.
Mouthguards and other physical protective devices may be useful in preventing damage to the lips and tongue due to the orofacial chorea and dystonia typical of chorea acanthocytosis.
There is no known curative treatment presently. Hearing aids and cataract surgery may be of use. Control of seizures, heart failure and treatment of infection is important. Tube feeding may be needed.
Idebenone, an antioxidant, was recently removed from the Canadian market in 2013 due to lack of effectiveness. A Cochrane review on antioxidants and other pharmacological treatment of patients with Friedreich ataxia concluded that there is limited but not persuasive evidence of efficacy.
A person suffering from Friedreich's Ataxia may require some surgical interventions (mainly for the spine and heart). Often, titanium screws and rods are inserted in the spine to help prevent or slow the progression of scoliosis. As progression of ataxia occurs, assistive devices such as a cane, walker, or wheelchair are required for mobility and independence. Other assistive technology, such as a standing frame, can help reduce the secondary complications of prolonged use of a wheelchair. The goal of surgery is to keep the patient ambulatory as long as possible.
In many cases, patients experience significant heart conditions as well. These conditions are much more treatable, and are often countered with ACE inhibitors such as enalapril or lisinopril and other heart medications such as digoxin.
People with Friedreich’s ataxia may benefit from a conservative treatment approach for the management of symptoms. Health professionals educated in neurological conditions, such as physical therapists and occupational therapists, can prescribe an exercise program tailored to maximize function and independence. To address the ataxic gait pattern and loss of proprioception typically seen in persons with Friedreich’s ataxia, physical therapists can use visual cueing during gait training to help facilitate a more efficient gait pattern. The prescription of an assistive device along with gait training can also prolong independent ambulation.
Low intensity strengthening exercises should also be incorporated to maintain functional use of the upper and lower extremities. Fatigability should be monitored closely. Stabilization exercises of the trunk and low back can help with postural control and the management of scoliosis. This is especially indicative if the person is non-ambulatory and requires the use of a wheelchair. Balance and coordination training using visual feedback can also be incorporated into activities of daily living. Exercises should reflect functional tasks such as cooking, transfers and self-care. Along with gait training, balance and coordination training should be developed to help minimize the risk of falls.
Stretching exercises can be prescribed to help relieve tight musculature due to scoliosis and pes cavus deformities.
There is no standard course of treatment for cerebellar hypoplasia. Treatment depends upon the underlying disorder and the severity of symptoms. Generally, treatment is symptomatic and supportive. Balance rehabilitation techniques may benefit those experiencing difficulty with balance. Treatment is based on the underlying disorder and the symptom severity. Therapies include physical, occuptational, speech/language, visual, psych/ behavioral meds, special education.
There is no cure for Machado-Joseph Disease. However, treatments are available for some symptoms. For example, spasticity can be reduced with antispasmodic drugs, such as baclofen. The Parkinsonian symptoms can be treated with levodopa therapy. Prism glasses can reduce diplopic symptoms. Physiotherapy/Physical Therapy and/or occupational therapy can help patients by prescribing mobility aids to increase the patients' independence, providing gait training, and prescribing exercises to maintain the mobility of various joints and general health to decrease the likelihood of falls or injuries as a result of falls. Walkers and wheelchairs can greatly help the patient with everyday tasks. Some patients will experience difficulties with speech and swallowing, therefore a Speech-Language Pathologist can assist the patients to improve their communicating abilities and their issues with swallowing.
There is no cure for spinocerebellar ataxia, which is currently considered to be a progressive and irreversible disease, although not all types cause equally severe disability.
In general, treatments are directed towards alleviating symptoms, not the disease itself. Many patients with hereditary or idiopathic forms of ataxia have other symptoms in addition to ataxia. Medications or other therapies might be appropriate for some of these symptoms, which could include tremor, stiffness, depression, spasticity, and sleep disorders, among others. Both onset of initial symptoms and duration of disease are variable. If the disease is caused by a polyglutamine trinucleotide repeat CAG expansion, a longer expansion may lead to an earlier onset and a more radical progression of clinical symptoms. Typically, a person afflicted with this disease will eventually be unable to perform daily tasks (ADLs). However, rehabilitation therapists can help patients to maximize their ability of self-care and delay deterioration to certain extent. Researchers are exploring multiple avenues for a cure including RNAi and the use of Stem Cells and several other avenues.
On January 18, 2017 BioBlast Pharma announced completion of Phase 2a clinical trials of their medication, Trehalose, in the treatment of SCA3. BioBlast has received FDA Fast Track status and Orphan Drug status for their treatment. The information provided by BioBlast in their research indicates that they hope this treatment may prove efficacious in other SCA treatments that have similar pathology related to PolyA and PolyQ diseases.
In addition, Dr. Beverly Davidson has been working on a methodology using RNAi technology to find a potential cure for over 2 decades. Her research began in the mid-1990s and progressed to work with mouse models about a decade later and most recently has moved to a study with non-human primates. The results from her most recent research "are supportive of clinical application of this gene therapy". Dr. Davidson along with Dr. Pedro Gonzalez-Alegre are currently working to move this technique into a Phase 1 clinical trial.
Finally, another gene transfer technology discovered in 2011 has also been shown by Dr. Davidson to hold great promise and offers yet another avenue to a potential future cure.
Physical therapists can assist patients in maintaining their level of independence through therapeutic exercise programmes. One recent research report demonstrated a gain of 2 SARA points (Scale for the Assessment and Rating of Ataxia) from physical therapy. In general, physical therapy emphasises postural balance and gait training for ataxia patients. General conditioning such as range-of-motion exercises and muscle strengthening would also be included in therapeutic exercise programmes. Research showed that spinocerebellar ataxia 2 (SCA2) patients with a mild stage of the disease gained significant improvement in static balance and neurological indices after six months of a physical therapy exercise training program. Occupational therapists may assist patients with incoordination or ataxia issues through the use of adaptive devices. Such devices may include a cane, crutches, walker, or wheelchair for those with impaired gait. Other devices are available to assist with writing, feeding, and self care if hand and arm coordination are impaired. A randomised clinical trial revealed that an intensive rehabilitation program with physical and occupational therapies for patients with degenerative cerebellar diseases can significantly improve functional gains in ataxia, gait, and activities of daily living. Some level of improvement was shown to be maintained 24 weeks post-treatment. Speech language pathologists may use both behavioral intervention strategies as well as augmentative and alternative communication devices to help patients with impaired speech.
Treatment is palliative, not curative (as of 2009).
Treatment options for lower limb weakness such as foot drop can be through the use of Ankle Foot Orthoses (AFOs) which can be designed or selected by an Orthotist based upon clinical need of the individual. Sometimes tuning of rigid AFOs can enhance knee stability.
Physiotherapy intervention aims to improve balance and gait of OPCA patients, by stimulating neuroplastic changes in the atrophied neural structure. A challenge-oriented treatment program has previously been shown to be beneficial for individuals with ataxia from OPCA. The treatment program was composed of repetitive training with task challenges (e.g. obstacle course) and/or novel motor skills acquisition over a 12-week period under the supervision of a physiotherapist. Task challenges were progressed only when the patient showed mastery of a task.
Overground harness systems may be used to allow OPCA patients to challenge their balance without chance of falling. Furthermore, home exercise programs and/or aquatic exercises are used to allow more repetitions to facilitate balance learning. Treatment programs should be frequently monitored and adjusted based on a patient's progress. Outcome measures such as the Berg Balance Scale, Dynamic Gait Index and activities-specific balance confidence scales are useful to assess patient’s progress over time.
The standard treatment is chenodeoxycholic acid (CDCA) replacement therapy. Serum cholesterol levels are also followed. If hypercholesterolemia is not controlled with CDCA, an HMG-CoA reductase inhibitor ("statins" such as simvastatin) can also be used.
Baclofen (β-p-chlorophenyl-GABA) has some analgesic properties and has been traditionally used for spasticity. Its pharmacological effects primarily take place via presynaptic GABA receptors in the spinal cord, simultaneously releasing excitatory neurotransmitters onto motor neurons. Because the number and function of GABA receptors has been shown to progressively diminish in Aldh5a1-/- mice, such a therapy may prove to be useful. However, no data on the efficacy of baclofen on Aldh5a1-/- mice or human patients has been reported.
The GABA antagonist CGP-35348 (3-amino-propyl-(diethoxymethyl) phosphinic acid) has been used in Aldh5a1-/- mice with strong results. It has shown to reduce the frequency of absence seizures, though there have been some cases in which it worsened convulsive seizures.
Because lack of sialic acid appears to be part of the pathology of IBM caused by GNE mutations, clinical trials with sialic acid supplements, and with a precursor of sialic acid, N-Acetylmannosamine, have been conducted, and as of 2016 further trials were planned.
There is no treatment for NBS, however in those with agammaglobulinemia, intravenous immunoglobulin may be started. Prophylactic antibiotics are considered to prevent urinary tract infections as those with NBS often have congenital kidney malformations. In the treat of malignancies radiation, alkylating antineoplastic agents, and epipodophyllotoxins are not used, and methotrexate can be used with caution and, the dose should be limited. Bone marrow transplants and hematopoietic stem cells transplants are also considered in the treatment of NBS. The supplementation of Vitamin E is also recommended. A ventriculoperitoneal shunt can be placed in patients with hydrocephaly, and surgical intervention of congenital deformities is also attempted.
No specific treatment is known that would prevent, slow, or reverse HSP. Available therapies mainly consist of symptomatic medical management and promoting physical and emotional well-being. Therapeutics offered to HSP patients include:
- Baclofen – a voluntary muscle relaxant to relax muscles and reduce tone. This can be administered orally or intrathecally. (Studies in HSP )
- Tizanidine – to treat nocturnal or intermittent spasms (studies available )
- Diazepam and clonazepam – to decrease intensity of spasms
- Oxybutynin chloride – an involuntary muscle relaxant and spasmolytic agent, used to reduce spasticity of the bladder in patients with bladder control problems
- Tolterodine tartate – an involuntary muscle relaxant and spasmolytic agent, used to reduce spasticity of the bladder in patients with bladder control problems
- Botulinum toxin – to reduce muscle overactivity (existing studies for HSP patients)
- Antidepressants (such as selective serotonin re-uptake inhibitors, tricyclic antidepressants and monoamine oxidase inhibitors) – for patients experiencing clinical depression
- Physical therapy – to restore and maintain the ability to move; to reduce muscle tone; to maintain or improve range of motion and mobility; to increase strength and coordination; to prevent complications, such as frozen joints, contractures, or bedsores.
Depending on subtype, many patients find that acetazolamide therapy is useful in preventing attacks. In some cases, persistent attacks result in tendon shortening, for which surgery is required.
Treatment for Joubert syndrome is symptomatic and supportive. Infant stimulation and physical, occupational, speech and hearing therapy may benefit some patients. Infants with abnormal breathing patterns should be monitored.
The syndrome is associated with progressive worsening for kidneys, the liver and the eyes and thus require regular monitoring.
There is no cure for GSS, nor is there any known treatment to slow the progression of the disease. However, therapies and medication are aimed at treating or slowing down the effects of the symptoms. Their goal is to try to improve the patient's quality of life as much as possible. Despite there being no cure for GSS, it is possible to undergo testing for the presence of the underlying genetic mutation. Testing for GSS involves a blood and DNA examination in order to attempt to detect the mutated gene at certain codons. If the genetic mutation is present, the patient will eventually be afflicted by GSS, and, due to the genetic nature of the disease, the offspring of the patient are predisposed to a higher risk of inheriting the mutation.
Treatment includes the use of iron chelating agents (such as desferrioxamine) to lower serum ferritin concentration, brain and liver iron stores, and to prevent progression of neurologic symptoms. This, combined with fresh-frozen human plasma (FFP) effectively in decreasing liver iron content. Repetitive use of FFP can even improve neurologic symptoms. Antioxidants such as vitamin E can be used simultaneously to prevent tissue damage to the liver and pancreas.
It has been suggested that a possible method of treatment for histidinemia is through the adoption of a diet that is low in histidine intake. However, the requirement for such dietary restrictions is typically unnecessary for 99% of all cases of histidinemia.