Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
There is no cure, although curative therapy with bone marrow transplantion is being investigated in clinical trials. It is believed the healthy marrow will provide the sufferer with cells from which osteoclasts will develop. If complications occur in children, patients can be treated with vitamin D. Gamma interferon has also been shown to be effective, and it can be associated to vitamin D. Erythropoetin has been used to treat any associated anemia. Corticosteroids may alleviate both the anemia and stimulate bone resorption. Fractures and osteomyelitis can be treated as usual. Treatment for osteopetrosis depends on the specific symptoms present and the severity in each person. Therefore, treatment options must be evaluated on an individual basis. Nutritional support is important to improve growth and it also enhances responsiveness to other treatment options. A calcium-deficient diet has been beneficial for some affected people.
Treatment is necessary for the infantile form:
- Vitamin D (calcitriol) appears to stimulate dormant osteoclasts, which stimulates bone resorption
- Gamma interferon can have long-term benefits. It improves white blood cell function (leading to fewer infections), decreases bone volume, and increases bone marrow volume.
- Erythropoietin can be used for anemia, and corticosteroids can be used for anemia and to stimulate bone resorption.
Bone marrow transplantation (BMT) improves some cases of severe, infantile osteopetrosis associated with bone marrow failure, and offers the best chance of longer-term survival for individuals with this type.
In pediatric (childhood) osteopetrosis, surgery is sometimes needed because of fractures. Adult osteopetrosis typically does not require treatment, but complications of the condition may require intervention. Surgery may be needed for aesthetic or functional reasons (such as multiple fractures, deformity, and loss of function), or for severe degenerative joint disease.
The long-term-outlook for people with osteopetrosis depends on the subtype and the severity of the condition in each person.The severe infantile forms of osteopetrosis are associated with shortened life expectancy, with most untreated children not surviving past their first decade. seems to have cured some infants with early-onset disease. However, the long-term prognosis after transplantation is unknown. For those with onset in childhood or adolescence, the effect of the condition depends on the specific symptoms (including how fragile the bones are and how much pain is present). Life expectancy in the adult-onset forms is normal.
As of October 2015, asfotase alfa (Strensiq) has been approved by the FDA for the treatment of hypophosphatasia. Current management consists of palliating symptoms, maintaining calcium balance and applying physical, occupational, dental and orthopedic interventions, as necessary.
- Hypercalcemia in infants may require restriction of dietary calcium or administration of calciuretics. This should be done carefully so as not to increase the skeletal demineralization that results from the disease itself. Vitamin D sterols and mineral supplements, traditionally used for rickets or osteomalacia, should not be used unless there is a deficiency, as blood levels of calcium ions (Ca2+), inorganic phosphate (Pi) and vitamin D metabolites usually are not reduced.
- Craniosynostosis, the premature closure of skull sutures, may cause intracranial hypertension and may require neurosurgical intervention to avoid brain damage in infants.
- Bony deformities and fractures are complicated by the lack of mineralization and impaired skeletal growth in these patients. Fractures and corrective osteotomies (bone cutting) can heal, but healing may be delayed and require prolonged casting or stabilization with orthopedic hardware. A load-sharing intramedullary nail or rod is the best surgical treatment for complete fractures, symptomatic pseudofractures, and progressive asymptomatic pseudofractures in adult hypophosphatasia patients.
- Dental problems: Children particularly benefit from skilled dental care, as early tooth loss can cause malnutrition and inhibit speech development. Dentures may ultimately be needed. Dentists should carefully monitor patients’ dental hygiene and use prophylactic programs to avoid deteriorating health and periodontal disease.
- Physical Impairments and pain: Rickets and bone weakness associated with hypophosphatasia can restrict or eliminate ambulation, impair functional endurance, and diminish ability to perform activities of daily living. Nonsteroidal anti-inflammatory drugs may improve pain-associated physical impairment and can help improve walking distance]
- Bisphosphonate (a pyrophosphate synthetic analog) in one infant had no discernible effect on the skeleton, and the infant’s disease progressed until death at 14 months of age.
- Bone marrow cell transplantation in two severely affected infants produced radiographic and clinical improvement, although the mechanism of efficacy is not fully understood and significant morbidity persisted.
- Enzyme replacement therapy with normal, or ALP-rich serum from patients with Paget’s bone disease, was not beneficial.
- Phase 2 clinical trials of bone targeted enzyme-replacement therapy for the treatment of hypophosphatasia in infants and juveniles have been completed, and a phase 2 study in adults is ongoing.
The only effective line of treatment for malignant infantile osteopetrosis is hematopoietic stem cell transplantation. It has been shown to provide long-term disease-free periods for a significant percentage of those treated; can impact both hematologic and skeletal abnormalities; and has been used successfully to reverse the associated skeletal abnormalities.
Radiographs of at least one case with malignant infantile osteopetrosis have demonstrated bone remodeling and recanalization of medullar canals following hematopoietic stem cell transplantation. This favorable radiographic response could be expected within one year following the procedure - nevertheless, primary graft failure can prove fatal.
Currently, there is no cure for infantile Refsum disease syndrome, nor is there a standard course of treatment. Infections should be guarded against to prevent such complications as pneumonia and respiratory distress. Other treatment is symptomatic and supportive. Patients show variable lifespans with some individuals surviving until adulthood and into old age.
While there is no cure for HPS, treatment for chronic hemorrhages associated with the disorder includes therapy with vitamin E and the antidiuretic dDAVP.
Infusions of immune globulin can reduce the frequency of bacterial infections, and G-CSF or GM-CSF therapy improves blood neutrophil counts.
As WHIM syndrome is a molecular disease arising from gain-of-function mutations in CXCR4, preclinical studies identified plerixafor, a specific CXCR4 antagonist, as a potential mechanism-based therapeutic for the disease. Two subsequent clinical trials involving a handful of patients with WHIM syndrome demonstrated that plerixafor could increase white blood cell counts and continues to be a promising targeted therapy.
A woman with spontaneous remission of her WHIM syndrome due to Chromothripsis in one of her blood stem cells has been identified.
In support of these studies, a 2014 phase I clinical trial treated 3 patients diagnosed with WHIM syndrome with plerixafor twice a day for 6 months. All three patients presented with multiple reoccurring infections before treatment and all had an increase in their white blood cell count post treatment. One patient (P3) had a decrease in his infections by 40% while the remaining 2 patients (P1 and P2) had no infections throughout the entirety of the treatment. Plerixafor may also proof to have anti-human papillomavirus (HPV) properties as all patients experienced a shrinkage or complete disappearance of their warts. While this treatment shows promise in treating neutropenia (decreased white blood cells), this trial showed no increase of immune globulins in the body. A phase III clinical trial has been approved to compare the infection prevention ability of plerixafor versus the current treatment of G-CSF in patients with WHIM.
Management of rhizomelic chondrodysplasia punctate can include physical therapy, additionally orthopedic procedures improved function sometimes in affected people. However the prognosis is poor in this condition.
A preoperative pulmonology consultation is needed. The anesthesia team should
be aware that patients may have postoperative pulmonary complications as part
of the syndrome.
Preoperative hematology consultation is advisable prior to elective ocular
surgeries. Since patients with the syndrome have bleeding tendencies,
intraoperative, perioperative, and postoperative hemorrhages should be
prevented and treated. If platelet aggregation improves with desmopressin, it
may be administered in the preoperative period. However, sometimes
plasmapheresis is needed in the perioperative period.
Ophthalmologists should try to avoid retrobulbar blocks in patients with the
syndrome. Whenever possible, patients with HPS may benefit from general
endotracheal anesthesia. Phacoemulsification may help prevent intraoperative
and postoperative bleeding in patients with the syndrome. Prolonged bleeding
has been reported following strabismus surgery in patients with the syndrome.
Treatment is most commonly directed at autoimmune disease and may be needed to treat bulky lymphoproliferation. First line therapies include corticosteroids (very active but toxic with chronic use), and IVIgG, which are not as effective as in other immune cytopenia syndromes.
Second line therapies include: mycophenolate mofetil (cellcept) which inactivates inosine monophosphate, most studied in clinical trials with responses varying (relapse, resolution, partial response). It does not affect lymphoproliferation or reduce DNTs, with no drug-drug interactions. This treatment is commonly used agent in patients who require chronic treatment based on tolerance and efficacy. It may cause hypogammaglobulinemia (transient) requiring IVIgG replacement.
Sirolimus (rapamycin, rapamune) which is a mTOR (mammalian target of rapamycin) inhibitor can be active in most patients and can in some cases lead to complete or near-complete resolution of autoimmune disease (>90%) With this treatment most patients have complete resolution of lymphoproliferation, including lymphadenopathy and splenomegaly (>90%) and have elimination of peripheral blood DNTs. Sirolimus may not be as immune suppressive in normal lymphocytes as other agents. Some patients have had improvement in immune function with transition from cellcept to rapamycin and it has not been reported to cause hypogammaglobulinemia. Hypothetically, Sirolimus may have lower risk of secondary cancers as opposed to other immune suppressants and requires therapeutic drug monitoring. It is the second most commonly used agent in patients that require chronic therapy. It is mostly well tolerated (though side effects include mucositis, diarrhea, hyperlipidemia, delayed wound healing) with drug-drug interactions. It has better activity against autoimmune disease and lymphoproliferation than mycophenolate mofetil and other drugs; however, sirolimus requires therapeutic drug monitoring and can cause mucositis. A risk with any agent in pre-cancerous syndrome as immune suppression can decreased tumor immunosurvellence. Its mTOR inhibitors active against lymphomas, especially EBV+ lymphomas. The Goal serum trough is 5-15 ng/ml and can consider PCP prophylaxis but usually not needed.
Other treatments may include drugs like Fansidar, mercaptopurine: More commonly used in Europe. Another is rituximab but this can cause lifelong hypogammaglobulinemia and a splenectomy but there is a >30% risk of pneumococcal sepsis even with vaccination and antibiotic prophylaxis
There are a multiple ways to treat Gunther's diseases, but one of the most crucial things that a person with this disease can do is limit themselves from sun exposure or eliminate sun exposure altogether. There are some sunscreens that have undesirable effects such as tropical sunscreens, but other sunscreens that have zinc oxide and titanium dioxide in them are shown to provide protection due to those light-reflective agents. To block the ultraviolet and visible light wavelengths and get the protection that patients with Gunther's disease require, physical barriers are needed. It is also advised that patients wear protective clothing to block the sun from their skin. Plastic films can be attached to car windows and homes to filter out some of the wavelengths that could cause harm to someone's skin suffering with this disease. Incandescent bulbs replace the normal fluorescent lamps. These bulbs release less light, which prevents the "porphyrin-exciting" wavelengths that fluorescent lights emit.
Other less beneficial treatments have been used to help treat Gunther's disease. These include oral beta-carotene and other treatments such as activated charcoal and cholestyramine, which are used to interrupt and stop the porphyrins from being reabsorbed in the body. The reason that these oral treatments are unreasonable is because they require an extremely large dose of medicine and therefore are not beneficial.
Erythrocyte transfusions have been shown to be a successful measure in decreasing the appearance of the disease by trying to lower the erythropoiesis and circulating porphyrin levels. Unfortunately, having chronic erythrocyte transfusions, it can be extremely harmful to the body and can cause severe complications.
To help with dry eye symptoms and visual function, using topical lubrication can be used.
A more invasive way to help treat Gunther's disease would be to have surgery. There have been numerous studies that have stated that bone marrow transplantation is successful. This is a recently new development for Gunther's disease so the long-term effects are still unresourced. If a patient has a life-threatening infectious complication then bone marrow transplantation is no longer relevant for them.
There are also reports that stem cell transplantation is successful in a limited number of participants
Children with blue diaper syndrome are put on restricted diets. This is in effort to reduce kidney damage. Restrictions include: calcium, protein, vitamin D, and tryptophan. Calcium is restricted to help prevent kidney damage. Examples of food with high levels of tryptophan include turkey and warm milk.
Antibiotics may be used to control or eliminate particular intestinal bacteria. Nicotinic acid may be used to control intestinal infections.
Genetic counseling can also be beneficial, as well as taking part in clinical trials.
There is a deficiency of malate in patients because fumarase enzyme can't convert fumarate into it therefore treatment is with oral malic acid which will allow the krebs cycle to continue, and eventually make ATP.
There is no known cure for achondroplasia even though the cause of the mutation in the growth factor receptor has been found. Although used by those without achondroplasia to aid in growth, human growth hormone does not help people with achondroplasia. However, if desired, the controversial surgery of limb-lengthening will lengthen the legs and arms of someone with achondroplasia.
Usually, the best results appear within the first and second year of therapy. After the second year of growth hormone therapy, beneficial bone growth decreases. Therefore, GH therapy is not a satisfactory long term treatment.
In terms of treatment for short-chain acyl-CoA dehydrogenase deficiency, some individuals may not need treatment, while others might follow administration of:
- Riboflavin
- Dextrose
- Anticonvulsants
Cystinosis is normally treated with cysteamine, which is available in capsules and in eye drops. People with cystinosis are also often given sodium citrate to treat the blood acidosis, as well as potassium and phosphorus supplements. If the kidneys become significantly impaired or fail, then treatment must be begun to ensure continued survival, up to and including renal transplantation.
There is no standard course of treatment for cerebellar hypoplasia. Treatment depends upon the underlying disorder and the severity of symptoms. Generally, treatment is symptomatic and supportive. Balance rehabilitation techniques may benefit those experiencing difficulty with balance. Treatment is based on the underlying disorder and the symptom severity. Therapies include physical, occuptational, speech/language, visual, psych/ behavioral meds, special education.
There is currently no cure, but some symptoms may be treated such as neuroleptics for the psychiatric problems.
The medication(s) listed below have been approved by the Food and Drug Administration (FDA) as orphan products for treatment of this condition. Learn more orphan products.
Currently this sub-type of muscular dystrophy has no cure and no "definitive" treatment exists. Treatment offers preventative tactics to delay muscle breakdown and increase life expectancy. Stretching and physical therapy can increase mobility. Treatment also includes correcting skeletal abnormalities through orthopedic surgery and other orthopedic techniques. Antiepileptic medication is administered to help prevent seizures. ACE inhibitors and beta blockers help treat heart conditions, and respiratory assistance is more than likely needed at some point for the affected individual
A high-protein diet can overcome the deficient transport of neutral amino acids in most patients. Poor nutrition leads to more frequent and more severe attacks of the disease, which is otherwise asymptomatic. All patients who are symptomatic are advised to use physical and chemical protection from sunlight: avoid excessive exposure to sunlight, wear protective clothing, and use chemical sunscreens with a SPF of 15 or greater. Patients also should avoid other aggravating factors, such as photosensitizing drugs, as much as possible. In patients with niacin deficiency and symptomatic disease, daily supplementation with nicotinic acid or nicotinamide reduces both the number and severity of attacks. Neurologic and psychiatric treatment is needed in patients with severe central nervous system involvement.
Recent research has been directed towards finding better treatment options. Multi-drug therapy using insulin sensitizers, such as metformin and pioglitazone, has been linked to improving residual insulin action. High doses of insulin-like growth factor 1 has also been effective in patients with Rabson–Mendenhall syndrome. Future studies are also focusing on the relation between genotype and phenotype. Though there is no cure, researchers remain optimistic on finding a cure.
There is no known cure for Rabson–Mendenhall syndrome. However, a series of steps can be directed towards treating the specific symptoms. For example, surgery may be performed to treat dental abnormalities. Furthermore, the goal of the treatment is also to maintain blood glucose levels as constantly as possible. Insulin is not as effective at normal doses, and even large doses show minimal effects. Frequent feeding is the most effective treatment to control blood glucose levels. Well thought out meals with complex combinations of carbohydrates are put together and assigned to the patient in hope of seeing a constant glucose level maintained. Though effective, these treatments tend to show more of an impact initially, and can become ineffective within months.
Treatment of Rabson–Mendenhall syndrome with pharmacologic doses of human leptin may result in improvement of fasting hyperglycemia, hyperinsulinemia, basal glucose, and glucose and insulin tolerance.
Quality of life is impacted severely and the prognosis of patients with Rabson–Mendenhall syndrome remains poor. This is due to the lack of a long term treatment. Life expectancy is 1–2 years.
Patients with propionic acidemia should be started as early as possible on a low protein diet. In addition to a protein mixture that is devoid of methionine, threonine, valine, and isoleucine, the patient should also receive -carnitine treatment and should be given antibiotics 10 days per month in order to remove the intestinal propiogenic flora. The patient should have diet protocols prepared for him with a “well day diet” with low protein content, a “half emergency diet” containing half of the protein requirements, and an “emergency diet” with no protein content. These patients are under the risk of severe hyperammonemia during infections that can lead to comatose states.
Liver transplant is gaining a role in the management of these patients, with small series showing improved quality of life.
Treatment consists of dietary protein restriction, particularly leucine. During acute episodes, glycine is sometimes given, which conjugates with isovalerate forming isovalerylglycine, or carnitine which has a similar effect.
Elevated 3-hydroxyisovaleric acid is a clinical biomarker of biotin deficiency. Without biotin, leucine and isoleucine cannot be metabolized normally and results in elevated synthesis of isovaleric acid and consequently 3-hydroxyisovaleric acid, isovalerylglycine, and other isovaleric acid metabolites as well. Elevated serum 3-hydroxyisovaleric acid concentrations can be caused by supplementation with 3-hydroxyisovaleric acid, genetic conditions, or dietary deficiency of biotin. Some patients with isovaleric acidemia may benefit from supplemental biotin. Biotin deficiency on its own can have severe physiological and cognitive consequences that closely resemble symptoms of organic acidemias.
Malignant infantile osteopetrosis, also known as infantile autosomal recessive osteopetrosis or simply infantile osteopetrosis is a rare osteosclerosing type of skeletal dysplasia that typically presents in infancy and is characterized by a unique radiographic appearance of generalized hyperostosis - excessive growth of bone.
The generalized increase in bone density has a special predilection to involve the medullary portion with relative sparing of the cortices. Obliteration of bone marrow spaces and subsequent depression of the cellular function can result in serious hematologic complications. Optic atrophy and cranial nerve damage secondary to bony expansion can result in marked morbidity. The prognosis is extremely poor in untreated cases. Plain radiography provides the key information to the diagnosis. Clinical and radiologic correlations are also fundamental to the diagnostic process, with additional gene testing being confirmatory.